In vitro Assessment of Anticancer Properties of Moringa peregrina Essential Seed Oil on Different Cell Lines

Elsayed Ahmed Elsayed,1,2 Mahmoud A. Sharaf-Eldin,3,4 Hesham A. El-Enshasy5,6 and Mohammad Wadaan1
1Bioproducts Research Chair, Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Natural and Microbial Products, National Research Centre, Dokki, Cairo 12311, Egypt
3Sara Alghonaim Research Chair, Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharij 11942, Saudi Arabia
4Department of Medicinal and Aromatic Plants Research, National Research Centre, Cairo 12622, Egypt
5Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor Darul Takzim, Malaysia
6Bioprocess Development Department, City for Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt.

ABSTRACT

Moringa peregrina belongs to the Moringaceae family and is native to the western part of Saudi Arabia and the eastern part of Egypt, from where it has been transferred to tropical and subtropical countries. The *Moringa* trees are highly appreciated for their nutritional and medicinal properties. In the past two decades, research has focused on investigating different parts of *Moringa* as a source for anticancer preparations. However, *M. peregrina* extracts were only evaluated for their antioxidant and anti-inflammatory activities, and the literature contains few (or no) information about the cytotoxic properties reported for *M. peregrina* seed oil. Accordingly, the current work aimed to evaluate the potential anti-proliferative properties of essential oil obtained from *M. peregrina* and its effects on various cell types. Different cell lines were exposed to increasing concentrations from the seed oil (0.15 to 1000 µg/mL) for 24h, and cell toxicity was evaluated. Results revealed that all cell lines under investigation were significantly affected depending on the used oil concentration. Furthermore, cell lines showed different response to the treatment with oil according to cell type. Additionally, HepG2 and HeLa cells showed the highest response to the applied essential oil, followed by MCF-7, CACO-2 and L929, where the toxicity percentages at the maximal oil doses recorded 75.82, 75.35, 67.89, 57.50 and 53.43%, respectively. The IC50 value obtained for HeLa cells was 366.3 µg/mL, and increased by 1.7- and 2.0-fold for HepG2 and CACO-2 cells, respectively. The present results suggest that essential oil isolated from *M. peregrina* seeds has potential cytotoxic properties against different cancer cell lines.

INTRODUCTION

During the last two decades, the use of microbial and plant products, has gained an increased interest in cancer therapy (El-Enshasy et al., 2013; Elsayed et al., 2014). Several compounds isolated from herbaceous medicinal plants were found to possess anticancer activities (Heo et al., 2014; Saleem et al., 2014). Extracts isolated from different parts of medicinal plants exhibited a significant inhibition of different cancer cells, i.e. breast, colon, lung, cervical, hepatocellular (Farooq et al., 2013; Kma, 2013; Olarte et al., 2013; Nikolić et al., 2014). Furthermore, medicinal plants and their extracts represented a good source for anticancer bioactive compounds currently applied in clinical trials for cancer treatment. Paclitaxel, which is isolated from *Taxus brevifolia* Nutt., is used against ovarian cancer and advanced breast cancer (Rowinsky et al., 1992). Podophyllotoxin, extracted from *Podophyllum emodi* is used with its derivatives (etoposide and teniposide) for the treatment of lymphomas as well as bronchial and testicular cancers (Cragg and Newman, 2005). Vincristine extracted from *Catharanthus roseus* G. Don. is mainly used with other cancer chemotherapeutics for treating different cancer types, i.e. leukemia, breast and lung cancer (Sultana et al., 2014).

Moringa peregrina belongs to the monogenic Moringaceae family containing 13 species of the genus *Moringa*. These plants are generally cultivated in tropical...
countries in Asia and Africa, and they range in size from small herbs to heavy trees (Singh et al., 2013). This family also contains the most widely known species M. oleifera Lam., known as miracle tree, horseradish tree, drumstick tree (Awodele et al., 2012). The plants present in this family are found to be rich in flavonoids, sterols, tocopherols, vitamin C and carotenes (Selvakumar and Natarajan, 2008; Yammuenart et al., 2008). Moreover, Moringa species are rich in essential oils, antioxidants and sulfur amino acids (Tsaknis et al., 1999; Ferreira et al., 2008). Although M. oleifera has been traditionally used as a source of nutrients, however, recent studies showed that different parts of the plant possess important biological properties. The leaves exhibited antioxidant and anticancer activities (SreeReddy et al., 2011; Awodele et al., 2012), the park and leaf extracts showed antimicrobial activities (Yusuf and Abdul Hamid, 2013), the pods have been traditionally consumed as a stimulating cardiotonic against fainting in Thailand (Mokkhasmit et al., 1971), the seed extract was used to reduce lipid peroxidation (Faizi et al., 1998), and the root was found to have anti-fertility and anti-inflammatory activities (Padmarao et al., 1996; Muangnoi et al., 2012).

Recently, M. peregrina seed extracts have been shown to exhibit antioxidant and anti-inflammatory properties (Koheil et al., 2011).

The seed essential oil contents of the two common Moringa species, i.e. M. oleifera and M. peregrina, are considered to be high, ranging from 33-41 and 49.8%, respectively (Tsaknis, 1998; Rashid et al., 2008). The seed oil obtained from Moringa has been used mainly in household as well as soap and perfume applications (Ghazali and Mohammed, 2011). Moringa seed oil has been evaluated as a potential feedstock for the production of biodiesel (Rashid et al., 2008). Additionally, seed and seed oil obtained from M. peregrina has been evaluated for their application as a source for biofuel and biodiesel-diesel blends (Salahelddeen et al., 2014, 2015). Moreover, Siddharaju and Becker (2003) and Chuang et al. (2007) reported different biological activities against microbial microorganisms as well as antioxidant activities. Recently, Elsayed et al. (2015) evaluated the cytotoxic activities of oils from M. oleifera seeds on different cancer cell lines. Their results revealed that the oil significantly decreased cell viability depending on the concentration applied. Additionally, from their obtained results, HeLa cells showed the maximal decrease in cell viability, where oil treatment resulted in about 76.1% inhibition of cell viability with an IC50 value of 422.8 µg/mL. Due to the scarcity of anticancer studies on Moringa essential seed oils, the current work aimed to explore the potential anti-cancer activities of M. peregrina seed oils on different cell lines.

MATERIALS AND METHODS

Materials and cell lines

Dulbecco's Modified Eagle's (DMEM) cultivation medium (AppliChem, Darmstatt, Germany) was supplemented with 4.5 g/L glucose. All other reagents, chemicals and materials were of cell culture grade.

The investigation was carried out using different cell lines, which were obtained from Sigma-Aldrich Chemical Company, USA. The cell lines included: breast cancer (MCF-7); liver cancer (HepG2); colon cancer (Caco-2); cervical cancer (HeLa) and mouse fibroblasts (L929).

Preparation of seed oil

The oil under study was of commercial grade purified from M. peregrina seeds, and was obtained from AsiaNet Trading Est., Riyadh, Kingdom of Saudi Arabia. The extraction of the oil proceeded, where the seeds were pressed at cold temperatures to avoid any possible change in the oil properties. The oil was mixed with DMSO to prepare a stock solution (1 mg/mL). Then, DMEM medium was used to serially dilute the stock oil solution, in order to prepare the working oil solutions, which were in turn sterile-filtered. According to previous literature working with seed oils (Elsayed et al., 2015), a series of working solutions ranging from 0.0 to 1000 µg/mL.

Cultivation conditions

Cells were cultivated in DMEM, containing 10% serum, 100x, 1% streptomycin/penicillin/amphotericin B solution, and were then periodically sub-cultured and transferred in a humid-CO2 incubator (ShelLab, USA) at 5% CO2, 37°C. Upon performing the cytotoxicity assay, cells were detached from T-flasks, then centrifuged and washed twice with sterile PBS buffer solution. Viable cell concentration was determined using Trypan Blue exclusion (Walford et al., 1964), where cells having viability higher than 95% are chosen for performing the assays. Different cell types were exposed to the working solutions of M. peregrina seed oil ranging from 15 to 1000 µg/mL. Following cell exposure, the cytotoxic activities of the tested seed oils were screened using 3-(4,5-dimethylthiazol-2-yl),5-biphenyl tetrazolium bromide (MTT). Blanks were exposed only to the solvent in a concentration ≤ 0.5%). Following cell treatments, we investigated the plates using an inverted contrast microscope (Nikon Eclipse T500, Japan, 10 X) in to order to detect possible morphological changes.

Cytotoxicity assay

Cell viability percentage was determined by MTT as described by Mosmann (1983), with some
CONCENTRATION, D50

HeLa and MCF-7 cell lines. The viability decreased from 100% to 75.35, 75.82, 67.89, 57.50 and 53.43%, respectively.

Table I lists the concentrations of the seed oil that result in an inhibition of half of the variable viable cell types. The results showed that the IC50 value obtained for HeLa cells was 366.3 µg/mL, while the values recorded for HepG2 and CACO-2 cells were higher by 1.7- and 2.0-fold, respectively. On the other hand, the IC50 values for MCF-7 and L929 cells were higher than 750 µg/mL.

Table I. The half maximal inhibitory concentration (IC50) determined for various cell types exposed to seed oil from M. peregrina.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>IC50 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa</td>
<td>366.3</td>
</tr>
<tr>
<td>HepG2</td>
<td>604.3</td>
</tr>
<tr>
<td>MCF-7</td>
<td>850.9</td>
</tr>
<tr>
<td>CACO-2</td>
<td>721.7</td>
</tr>
<tr>
<td>L929</td>
<td>935.8</td>
</tr>
</tbody>
</table>

Morphological alternations

The results of the influence of variable concentrations of the oil obtained from M. peregrina kernels on the morphology of different cells are shown (Fig. 2). It can be clearly observed that seed oil concentrations higher than 125 µg/mL significantly affected the characteristics of the growth morphology of all evaluated cell lines. Moreover, this effect was proportional to the applied concentration. Microscopic examination showed that cells are reduced in size and lost their adherence capacity. Additionally, the maximal seed oil concentration resulted in cell rounding-up and floating in relation to the morphology of the control untreated cells.

DISCUSSION

Currently, the pharmaceutical industry is depending more and more on natural resources (medicinal plants, microbes, etc.) for obtaining their major active compounds for the preparation of potential anti-cancer drugs (Elsayed et al., 2013; Vasanath et al., 2015). M. oleifera, is a fast growing tree resident mainly in tropical countries, and is greatly valued and used in food and health purposes (Waterman et al., 2014). Historically, M. oleifera leaves have been used to treat several acute and chronic diseases, and have been shown to exhibit many bioactive properties; reduction of blood glucose and lipid levels, inhibition of microbial and parasitic growth and reduction of inflammation, oxidative capacities and cancer development (Fahey, 2005; Awodele et al., 2012;
Mbikay, 2012). Despite the fact that *M. peregrina* has been reported to show antioxidant and anti-inflammatory activities, however, few (or no) reports discuss the biological properties of its seed oil. Accordingly, the current investigation was undertaken to examine the anti-proliferative properties of *M. peregrina* seed oil against different cell lines.

The obtained results clearly indicated that the essential seed oil of *M. peregrina* has a significant effect (*p*<0.05) on cell viability of all tested cell lines, and that the reduction in cell viability is proportional to the concentration applied. Our results are in good agreement with those previously reported by Ignea *et al.* (2013) who found that grape seed extracts exhibited cytotoxic activities in PC3 and HepG2 2.2.15 cell lines. Furthermore, they also found that higher seed extract concentrations as well as longer treatment periods resulted in an increased cytotoxicity, especially in PC3 cells. When different cell lines were treated with the essential oil extracted from *M. peregrina* seeds, our results revealed that different cells vary in their response when subjected to different concentrations of the essential oil. HepG2 and HeLa cells were the most affected, followed by MCF-7, CACO-2 and L929 cells. This can be generally attributed to the fact that different cell types react differently to the administered doses.
Fig. 2. Alternations in the morphological characteristics of various cells as influenced by increasing concentrations of oil extracted from \textit{M. peregrina} seeds (10x magnification).

Based on the inherent differences found in their cell membrane structure and organization (Heo et al., 2014). Moreover, we previously studied the anti-proliferative properties of seed oil isolated from \textit{M. oleifera} on different cell lines, and found that the largest toxic effect was obtained on HeLa cells (Elsayed et al., 2015). The anti-proliferative activities of the essential oil extracted from \textit{M. peregrina} seeds may be explained due to the presence of different fatty acids, sterols and tocopherols. Atolani et al. (2012) reported different cytotoxic activities for seed oils obtained from edible fruits, and they attributed this effect for the presence of omega-3 unsaturated fatty acids. The oil contents of \textit{M. peregrina} seeds were reported to reach about 50-54.3\%, where the saturated (mainly oleic and gadoleic acids) and unsaturated (mainly palmitic and stearic) fatty acids corresponded to 14.7 and 84.7\%, respectively (Somali et al., 1984; Tsaknis, 1998). Moreover, \textit{M. peregrina} seed oil also contains sitosterols and \(\alpha\)-, \(\gamma\)- and \(\delta\)-tocopherols. Scheim (2009) investigated the effect of different unsaturated fatty acids on different cancer cells, and found that they reduce tumor growth and cancer occurrence in living models. Furthermore, lipid peroxidation has been proposed as the cytotoxic mode of action of fatty acids present in the oils, where the peroxidation process produces increased levels of free radicals that alter the structure of the cell membrane of cancerous cells (Ravichandran and Johnson, 1999).

Monitoring cell morphology as affected by different concentrations of the essential seed oil revealed that cells showed abnormal characteristics of cell morphology and started to detach from plate surfaces in response to the oil concentration. These changes finally resulted in cell death. These results also are in good agreement with those previously reported (Vijayan et al., 2004). The authors reported morphological alternations and cell
detachment and death when they treated different cell lines with alkaloid extracts obtained from different parts of Solanum pseudocapsicum. Additionally, our previous results obtained with seed extracts from M. oleifera showed the same morphological changes (Elsayed et al., 2015).

In conclusion, the obtained results clearly confirm that the essential oil obtained from M. peregrina seeds has a significant inhibitory effect on different cell lines investigated. This effect was found to depend on the concentration used where HeLa and HepG2 cells were the most affected cell types. Finally, the current investigation can be considered as a primary investigation paving the way for future work investigating the possible mechanisms and modes of action of oil obtained from M. peregrina seeds on different cancer cell lines.

ACKNOWLEDGMENT

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group project "RG-1435-047". The authors are thankful to Sara Alghonaim Research Chair, Prince Sattam bin Abdulaziz University, for providing the Moringa oil.

Conflict of interest statement

The authors have no conflict of interest to declare

REFERENCES

