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 Abstract.- The Deoxyribonucleic acid (DNA) molecular structure contains lot of important information which 
is unique in every human being. Storage, processing and manipulation of DNA’s structural information in a computer 
system are still in its infancy. For perfect handling of such type of data, we need a Database Management System. Our 
research work described in this paper arose from the observation that existing data models and query languages (and 
the database systems realizing them) do not offer sufficient support for the modelling of DNA structure. This is an 
attempt to find a good representation for DNA structure and solution to the problem representation of DNA is given in 
form of an object oriented data model by using the idea of bar code technology. It is shown that the chemical structure 
of DNA can be encoded in bar code which makes storage of DNA structure a lot simpler than existing approaches. In 
the end we have proposed a query language (DNA-QL) to store, retrieve and manipulate the biological data. To 
achieve these objectives, we intend to propose a data model to model DNA structures in a uniform fashion. 
Development of this type of model and query language enables us the development of DBMS for storing biological 
structural information of DNA. 
 
Keywords: Growing database, Query Language, Indexed, DNA, Data model, DNA-QL, Constraints, SQL, biological 
data, data types, Sub Sequence, Information. 

 
 

INTRODUCTION 
 

 DNA is an essential part of all living 
organisms and biologists are researching on 
determining functions of DNA. There is enormous 
amount of complex DNA structure data that needs 
to be stored efficiently. In current times, new 
species are being invented at a very rapid phase 
(Mukhtar, 2015). This species invention have 
brought an explosion in the amount of molecular 
biological data which is available for research 
community. 
 The existing data modelling techniques are 
incapable to model these complex structures. New 
data modelling techniques are required for 
modelling the DNA structures. Also, exponential 
growth of new DNA data from the wet laboratories 
is contributing difficulties and complexity to the 
data management (such as data modelling, storage, 
retrieval and manipulation) and the software 
development methods for bioinformatics. To 
overcome these issues, some generic object-oriented 
data models and DBMS have been developed, such 
as Orion (Kim et al., 1990), O2 (Deux et al., 1990)  
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and Iris (Wilkinson et al., 1990). 
 The DMBS are unsuitable to use and manage 
the non-standard data such as DNA and protein 
data. There are two types of non-standard data 
inside a DNA structure and they are given below: 
 
 Sequence data 
 Core data supports a range of standard data 
types including string, date and number. Sometimes, 
however, we need an attribute's value to be a type 
that is not supported directly. The existing general-
purpose OODBs do not have any standard (built-in) 
data types and biological domain-specific functional 
operations for biological research (Wang, 2007). In 
biological data DNA sequence is non-standard data 
type and its corresponding data. It is a common and 
current practice to store metadata of each sequence 
and its data in a relational DBMS. This practice has 
a serious problem that the relational DBMS do not 
support approximate and partial sequence matching 
queries. There is another approach in practice in 
which the sequence data is stored in a flat file and 
external indices are created which are processed by  
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a special purpose query language (Jagadish et al., 
2003). This approach is the classical file system 
approach which lacks in supporting the features of 
DBMS technology such as structured query 
language,  
 
 Shape data 
 The shapes of DNA 3D structure and protein-
DNA complexes are important objects in the study 
of the structural biology. These type of data have 
been supported in some DBMS, but they are not 
considered as a mainstream research topic in the 
field of database. There is no query language 
available for 3D rigid shape-matching in the 
existing DBMS (Jagadish et al., 2003).  
 So there is an urgent need of a new object-
oriented data model that can model and capture 
different and non-standard characteristics of the 
DNA structures and data. Although a few object-
oriented data models have been proposed for 
different types of biological data e.g., AceDB 
(Durbin and Thierry, 1994), MapBase (Lamb and 
Landis, 1991), VODAK (Klas et al., 1994), P/FDM 
(Gray et al., 1990), PDBLib (Chang et al., 1994) but 
there is no data model available specifically for 
DNA structures. Many databanks (flat file systems) 
have been developed for DNA, but most of them are 
developed as flat file systems and some as relational 
databases. Flat files usually manage data by using 
strings and some other simple tools that can be 
easily mastered, but leave users difficulty to 
manipulate data. In addition, it does not support 
complex data types, which makes it not be able to 
meet the requirements of the management of 
complicated biological data. Relational databases 
are mature and are successfully applied in many 
areas, and one of the major reasons is that the 
relational data model is much simpler than others. 
However this advantage becomes a big issue in the 
life science database applications because of the 
lack of support for complex data types. 
 To overcome the above mentioned 
shortcomings of the existing data models and 
databanks and non-availability of data model for the 
DNA structures, we propose an object-oriented data 
model with built-in data types and built-in 
biological domain-specific functional operations and 
then propose a Query language to manipulate the 

complex DNA structure data. In this proposed data 
model, we use an encoding methodology for coding 
the chemical structures. The concept of this 
encoding methodology is derived from the 
commercially available barcode technology. This 
paper describes an integrated approach which takes 
advantage of both automation technologies such as 
commercial bar coding tools as well as existing 
molecular structure representation formats for the 
description of DNA structure. We demonstrate that 
barcodes are one of the most practical methods for 
inputting molecular structures into computer 
systems in a fully automated and less error-prone 
fashion. 
 

MATERIALS AND METHODS 
 
 DNA is a nucleic acid that contains the 
genetic instructions used for the development and 
functionality of all known living organisms and 
some viruses. The main role of DNA molecule is the 
long-term storage of information. It consists of two 
long polymers of simple units called nucleotides, 
with backbones made of sugars and phosphate 
groups joined by ester (hydrogen) bonds. These two 
strands run in opposite directions to each other and 
are therefore anti-parallel (Tseng and Yang, 2013). 
Attached to each sugar is one of four types of 
molecules called bases. Fig. 1 shows the flat 
molecular structure of DNA having four different 
bases which are commonly found in DNA: adenine 
(A), guanine (G), cytosine (C), and thymine (T). In 
their common structural configurations, A and T 
form two hydrogen bonds while C and G form three 
hydrogen bonds.  Because of the specificity of base 
pairing, the two strands of DNA are said to be 
complementary. So it forms the sequence of these 
four bases along the backbone that encodes 
information. This information is read using the 
genetic code, which specifies the sequence of the 
amino acids within proteins.  
 The code is read by copying stretches of 
DNA into the related nucleic acid RNA, in a process 
called transcription (Berg et al., 2002). Within cells, 
DNA is organized into structures called 
chromosomes. These chromosomes are duplicated 
before cells divide, in a process called DNA 
replication (Lodish et al., 2000). Eukaryotic 
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organisms (animals, plants, fungi etc.) store their 
DNA inside the cell nucleus, while in prokaryotes 
(bacteria, virus) it is found in the cell's cytoplasm. 
Within the chromosomes, chromatin proteins such 
as histones compact and organize DNA. These 
compact structures guide the interactions between 
DNA and other proteins, helping control which parts 
of the DNA are transcribed (Butler, 2001). The 
structure of DNA is shown in Figure 1. 
 

 
 

 Fig. 1. Flat molecular structure of DNA 
(www.cnx.org) 

 
Relational vs object oriented databases 
 Traditional data models such as relational 
database lack of support for complex data types and 
built-in biological domain-specific functional 
operations which is a big issue for DNA data 
application. Hence many scientists switch to the 
object-oriented databases since object-oriented 
nature of life science data perfectly matches the 
architecture of object oriented databases. Table I 
summarizes some of the main differences between 
relational and object oriented databases on the basis 

of certain criteria. From the above comparison of 
relational and object oriented data models given in 
Table 1, we can conclude that OODM allows a 
structurally adequate representation of the data and 
can capture the operational semantics of 
applications (Beynon-davies, 2004). In bio-
molecular databases for each fundamental class, 
dedicated data types are required, that cannot be 
easily supported for example in relational database 
systems. The numerous, heterogeneous bio-
molecular databases make database integration 
techniques necessary, for which object–oriented 
database systems are well suited. Standardization 
efforts in the field of bio-molecular databases would 
be extremely valuable, as the number of 
heterogeneous databases is rapidly growing in the 
area. An adequate approach to define such a 
standard would be based on the object–oriented data 
model (Aberer, 1995).  
 
Object oriented data models for bio-molecular 
applications  
 Data modeling in the bio-molecular 
application domain requires flexible and expressive 
data models, because of the many complex concepts 
that are interconnected in various ways. The 
complex structures, semantic constraints, different 
data types and derived data of bio-molecular 
applications make it necessary to develop an object 
oriented data model for these applications. Many 
object oriented data models have been made for bio 
molecular databases. Some of the object oriented 
data models for bio-molecular applications are 
described below. 
 
AceDB 
 AceDB (Durbin and Thierry, 1994) is a 
special purpose object–oriented database system 
which was originally designed to meet the needs of 
the C. elegans mapping and sequencing project. The 
data model supports classes and methods, but does 
not support inheritance. The objects can be grouped 
in a hierarchical way. As key features the data 
model allows to dynamically change the database 
schema by adding new attributes, the possibility to 
attach freely searchable textual annotations 
everywhere. A number of graphical interface tools 
support the  access  to  the  database system.  One of  
 

Anti-Sense Strand Sense Strand 
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Table I.- A Comparison of database management systems. 
 
Criteria RDBMS ODBMS 
   
Defining standard SQL2   SQL3/4 (in process) and  ODMG-V2.0 
   
Syntax Complexity User friendly syntax; easier to learn complex and difficult to learn due to the 

object oriented technology 
   
Efficiency Inefficient when querying or processing 

large amount of data, for example, video 
stream collections, image collections  

Highly efficient for processing large 
amount to data including multimedia object 
as well 

   
Languages SQL (Structured Query Language) OQL (Object Query Language) as an 

object-oriented extension of SQL 
   
Technicality GUI interface are available that makes the 

technology available to people for querying 
data who are not highly technical 

Technical programmer or developer needed 
for querying data 

   
object-oriented programming support Poor Inefficient to querying; programmers 

spend 1/4 of time to code and map the 
program object instances to database  

Object database mostly handle complex 
data types and support is direct &extensive. 

   
Complex data relationships It makes the data independent from 

application, good for querying data with 
simple& easy relationships  

Objects are a natural way to model; can 
maintain and manipulate a wide variety of 
data types and relationships 

   
Simplicity of use In relational model the structure of table is 

easy to understand & many end-user tools 
available  

Best for programmers; some SQL access 
for end users 

   
Extensibility & content  These supports limited set of data types e.g. 

integer, String, date, double etc. 
Allow users or programmers to define and 
use new object data types. 

   
Language maturity Very mature  Comparatively mature, but difficult to 

understand and use 
   
 
the tools supports set–oriented, navigational access 
to the database. AceDB is also used as a front–end 
for the Integrated Genome Database (IGD) (Durbin 
and Thierry, 1994) which integrates existing 
heterogeneous genome databases and is 
implemented on top of a relational DBMS. 
 
MapBase 
 MapBase is a system to support the 
experimental workflow in a laboratory for 
constructing  genome maps. MapBase has been built 
using an object oriented database management 
system ObjectStore (Lamb and Landis, 1991), 
which uses C++ as data definition and manipulation 
language. Some problems were faced during 
development of the project using ObjectStore e.g., 

lack of well- defined data model, lack of schema 
evolution, chances of memory leak, insufficient 
query facilities etc. So MapBase was built as an 
intermediate layer between ObjectStore and the bio-
molecular applications. There are some C++ classes 
that are stored in the database of MapBase with 40 
additional classes that are used only during 
execution of the MapBase server. Some classes 
represent specialized scalar types while others 
represent more complex objects. Due to powerful 
language of C++ MapBase is able to define DNA 
sequences of arbitrary length efficiently (Goodman 
et al., 1994). 
 
Docking-D  
 Docking-D  is  an  object  oriented  integrated  
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Table II.- A comparison of biological database management systems. 
 

Criteria AceDB MapDB Docking-D P/FDM PDBLib 
      

Data Model AceDB C++ VML FDM C++ 
Query Language Navigational Graphical Navigational VQL Functional MMQL 
Query Optimization No No Yes Yes No 
Support for schema evolution Yes Yes No No NA 
      

 
database for storing, retrieving and updating protein 
data. The data is taken form flat file and relational 
databases like SWISS-PROT (Bairoch and 
Boeckmann, 1994) and PDB (Berman et al., 2000) 
and etc. Docking-D is implemented using an object 
oriented DBMS VODAK (Klas et al., 1994). 
VODAK   provides   new  application  specific  data 
modeling features along with the standard features 
of object oriented data models. Docking-D 
integrates databases in two basic phases: a syntactic 
transformation phase and a semantic integration 
phase. In the syntactic transformation phase, 
heterogeneous data models are mapped to a uniform 
data model. The object oriented data model of 
VODAK, is used as the canonical data model into 
which the external schemas are mapped. In semantic 
integration phase, several export schemas are 
combined on the basis of uniform data model.  
 The integrated schema is generated by 
generalization i.e. classes are constructed that are 
containers for the union of the instances of different 
classes carrying information about the same real 
world aspect (Aberer, 1995). 
 
P/FDM 
 P/FDM is a functional object oriented data 
model for storage and retrieval of protein data 
derived from PDB. In the functional object oriented 
data model classes can be accessed only by means 
of functions. The attributes of objects also 
correspond to stored functions. P/FDM is a network 
of objects which represent protein at primary, 
secondary and tertiary levels. P/FDM is accessed 
either by using the logic programming language 
PROLOG or by functional query language 
DAPLEX (Gray et al., 1990). 
 
PDBLib 
 PDBLib is implemented in the object–
oriented programming language C++ and provides 

memory resident data structures that can be derived 
from PDB database entries. In this way it provides 
by means of a C++ class library an abstract interface 
to PDB. The classes of the library are divided into 
four different groups (Shindyalov et al., 1994). So-
called intrinsic classes describe the macromolecular 
structures of protein chains, residues and atoms. 
Extensible classes provide a layer that separates the 
implementation details of intrinsic classes from the 
other parts of the library and the user. Iterative 
classes model sets of molecular objects and allow 
iterating and filtering over them. I/O classes are 
used to load molecular structures from files (Chang 
et al., 1994). 
 In the above, Table II summarizes some 
properties of the existing Data models for bio-
molecular application. We can examine that there is 
no data model available specifically for DNA 
structures. They do not have any built-in data types 
for biological research and built-in biological 
domain-specific functional operations for handling 
DNA Structure Data. 
 

 
 

Fig. 2. Schema of DNA sense strand. 
 
Object oriented data model for DNA structure 
 In this section we have proposed an Object 
Oriented Data Model for DNA Structure. As 
mentioned earlier, DNA is a collection of four 
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different types of nucleotides. Figure 2 shows the 
general schema of DNA sense strand, where 
SSDNA denotes root of sense strand of DNA 
system, with n nucleotides i.e., N1, N2, N3…Nn as its 
children. 
 
Dnao object 
 In the proposed object oriented Data model, 
object is referred to as Dnao, and is defined by a 3-
tuple as follows:  
 

Dnao (DS, DO, Constraints)   ………..…….. (1) 
 
 The definition of Dnao as described in 
Expression (1), where  
1. The first part of Dnao is DS that denotes a 

DNA structure. DS is defined by a set of 
instance-variables/attributes of a Dnao (Sha et 
al., 2008).  

2. The second part of a Dnao is DO that denotes 
DNA Operation, and it is defined by a set of 
operations/methods/ functions that operate on 
data values assigned to the instance-variables 
as defined in DS (Sha et al., 2008). 

3. The third part is Constraints which is defined 
by a set of constraints on the DS.  

 
 Here we are again referring to Figure 1 which 
describes the detailed structure of DNA. It is clear 
from the figure that the only difference between the 
‘sense’ and ‘anti-sense’ strand is the direction and 
sequence of bases. Same Sugar and Phosphate 
groups are present on both strands. It is assumed 
that if we have sense strand base sequence then we 
can extract DNA anti-sense strand base sequence, 
RNA strand base sequence and protein amino-acids 
sequence by applying the operations present in 
Dnao object in Expression (1) which can be 
elaborated mathematically in Set theory notation as 
follows. 
 
Mathematical modeling 
 For mathematical modeling we again refer to 
sense strand base sequence presents in Figure 3. The 
set Ns contains the sequence of nucleotide presents 
on sense strand. 
 

Ns= {Ns1, Ns2, Ns3…. Nsn}… (2) 

 The set NAs contains the sequence of 
nucleotide presents on Anti-sense strand. 
 

NAs= {NAs1, NAs2, NAs3 ,…. NAsn}… (3) 
 
 If we have only sense strand nucleotide 
sequence, then we can extract anti-sense strand 
nucleotide sequence. Equation (2) nucleotides Ns1, 
Ns2, Ns3 ,…. Nsn can further represented in the 
form of sugar, base and phosphate molecules. We 
knew that every nucleotide is composed of sugar, 
base and phosphate molecules.  
 

b = {A, T, C, and G}… (4) 
 
 The set Ns may also be defined as: 
 
Ns= {(S U b1U P), (S U b2U P), (S U b3U P)... (S U 

bn U P)} (5) 
 
 The only difference among the elements of 
Ns is base molecules attached with sugar and 
phosphate molecules, that can belong to the set b in 
equation 4. For simplification in mathematical 
modeling we simplify our set of sense strand 
nucleotides by taking  S and P common and only 
considering bases present in the set. Such that the 
simplified form of Equation 5 becomes: 
 

Ns = S U P U {b1, b2 , b3…. bn }…..(6) 
Ns = S U P U B 

 
 For simplicity we are only considering set B 
of bases from equation 6 
 

B= {b1, b2, b3…. bn }…(7) 
 
 By applying complement operation on  set  B 
in equation 7 we obtain set of complement bases B´ 
that are present in anti-sense strand in set NAs 
,which is given below in simplified form.  
 

B´= {b1 ,́ b2 ,́ b3´…. bn´}…(8) 
 
Where b1´, b2 ,́ b3´…. bn´ are complement bases 
which also belong to the set b= {A, T, C, G} of 
bases described in equation 4. The complement of 
the bases A, T, C, and G in sense strand are given in 
Table III. 
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Table III.- Bases and their complements 
 
Sense-Strand Base Anti-sense strand complement base 
  

A T 
T A 
C G 
G C 
  

 
 Finally the set of anti-sense strand may be 
defined as: 
 

NAs = { (S U b1  ́U P), (S U b2  ́U P) , (S U b3  ́U 
P),... (S U bn  ́U P) }…(9) 

NAs = S U P U B´ 
 
 For simplicity we are only considering set B ´ 
of complement bases from equation 9. 

B´= {b1 ,́ b2 ,́ b3´…. bn´}….(10) 
 
 The only difference among the elements of 
NAs is complement base molecule, which also 
belong to the set b in Equation 4 attached with sugar 
and phosphate molecules. As mentioned earlier in 
the previous sections that by applying transcription 
operation “getDTrancript” (Algorithm given in 
Appendix section) on antisense strand sequence B´= 
{ b1 ,́ b2´, b3´…. bn´ }…(5) RNA strand sequence 
is obtained. 
 

NRna = getDTrancript(B´) 
 
 The base sequence obtained after applying 
transcription represented in set notation in equation 
6 as follows. 
 

NRna= {b1´ ,́ b2´ ,́ b3´´…. bn´´ }…(6) 
 
 The base sequence b1´´, b2´ ,́ b3´´…. bn´´ 
belongs from the set b´={A,U,C,G}. Thus for each 
C base encountered on DNA anti-sense strand, a G 
base is inserted in the RNA; for each G, a C; and for 
each T, an A is inserted. However, each A on the 
DNA anti-sense strand guides the insertion of the 
uracil (U base). Where T is not present in RNA 
strand as given in Table IV. 
 In this way a DNA strand converts itself into 
an RNA sequence by going through an intermediary 
step of transcription. 

Table IV.- Bases obtained after transcription. 
 
Anti-Sense Strand 

Base 
RNA strand base after 

Transcription 
  

A U 
T A 
C G 
G C 
  

 
Encoding DNA structure using bar-code technology 
 Barcode contains a set of black bars in 
varying width separated by white spaces encoding 
alphanumeric characters. Traditionally barcodes are 
printed on products so that they can be identified 
easily and efficiently. An example barcode is given 
in Figure 3. We have used the bar-code technology 
for the encoding the complex structure of DNA for 
its efficient storage and retrieval 
 

 
 

 Fig. 3. A typical linear barcode 
(www.dataid.com) 

 
 The National Chemical Laboratory, Pune, 
employs 2D barcode encoded structures for inhouse 
repository management, where barcodes can also be 
used for querying the database for similar or 
substructures of the query structure (Karthikeyan, 
2005. The chemical structures are represented in 2D 
(PDF417) barcode representation. For the web-
based applications, an interface is developed which 
interprets these barcodes, and export them as 
optimized 3D chemical structures. Applications of 
this barcode representation also perform some 
important functions such as automatic storing and 
web-based tracking of molecular samples. 
 We use the same idea in encoding DNA’s 
sequences but doing some necessary modifications. 
Fig 4 shows the mapping of DNA Flat structure to 
Deoxyribonucleic acid-code by keeping in 
consideration the two types of strands present in 
DNA. In our modified encoding format, we use 
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numeric digits instead of black and white bars. This 
modified barcode (Deoxyribonucleic acid-code) 
format is shown in Figure 4. 
 

089  090    SSDNA  091 092 Hydrogen Bond 093 
 

 Fig. 4. Deoxyribonucleic acid-code 
format, encoding DNA. 

 
 In Figure 4, the Deoxyribonucleic acid-code 
format consists of three parts. Format starts with 
code digit 089 and ends with code digit 096. We 
have used 3-digit code-words in our 
Deoxyribonucleic acid-code ranging from 000 to 
999. The code-words from 000 to 088 are reserved 
for the structural information of a DNA.  
 
1. The first part of the format starts from the 

code 089 which shows start symbol of 
Deoxyribonucleic acid-code. Then 090 shows 
start symbol of Sense Strand of 
DNA(SSDNA). SSDNA ends with the code 
091. Here the notation SSDNA represents the 
sense strand of DNA which already has been 
explained. 

2.  The second part of the format starts from the 
code word 092 which describes the hydrogen 
bond which can be either double hydrogen 
bond or triple hydrogen bond and ends with 
the code word 093.  

3. The third part of the format starts from the 
code word 094 contains the term ASDNA 
which represents the anti-sense strand of 
DNA and ends with the code word 095.At the 
end 096 represents the End symbol of 
Deoxyribonucleic acid-code. 

 
 The hierarchal representaion of DNA 
Barcode structure (Fig. 4) is given in Figure 5. 
 In Table V we have given the code-words and 
their meanings for encoding DNA Structure in the 
proposed data model. The encoding scheme that is 
proposed above can be extended for the future use. 
We have used only the first 100 code-words (Table 
V) out of the 1000 code-words. The remaining 900 
code-words in Table V are available for encoding 
the information about other bio-molecular structures 
in the future. This shows extendibility of the 
proposed data model. 

 
 

 Fig. 5. Hierarchal representation of DNA 
Barcode Structure. 

 
Table V.- DNA/RNA structure code-words. 
 

Code-
words 

Description 

  
089 Start symbol of  Deoxyribonucleic acid-code 
096 End symbol of  Deoxyribonucleic acid-code 
090 Start symbol of Sense strand of DNA (SSDNA) 
091 End symbol of Sense strand of DNA (SSDNA) 
092 Start Symbol of hydrogen bond 
093 End Symbol of hydrogen bond 
094 Start symbol of anti-sense strand of DNA 

(ASDNA) 
095 End symbol of anti-sense strand of DNA 

(ASDNA) 
097 Start symbol of RNA strand after Transcription 
098 End symbol of RNA strand after Transcription 
000 Double Hydrogen Bond 
001 Triple hydrogen bond 
002 Phospho-diester bond 
003 DeoxyRibo Sugar-Base bond 
004 DeoxyRibo Sugar-Phosphate bond 
005 Thymine 
006 Adenine 
007 Guanine 
008 Cytosine 
009 DeoxyRibo Sugar 
010 Phosphate 
011 Uracil 
096-999 Reserved for Future Use 
  

 
Constraints 
 A constraint is a description of some 
condition that must be satisfied by a database state if 
it is to reflect its real world semantics accurately. In 
order to come up with the efficient querying to 
DNA structure data we need a set of constraints in 
the core of an object Model. Constraints on a data 
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model are of two types, implicit constraints and 
explicit constraints. The explicit constraints are 
defined by the user while the implicit constraints are 
defined by the data model developer (Durbin and 
Thierry, 1994). We have defined following (5) 
implicit integrity constraints. 
i. There are several attributes in the DNA 

database schema that store numerical 
properties of the data e.g. the molecular 
weight (mol.wt) and length attributes 
(mol.len) of the class DNA. These attributes 
are defined as either floats or integers, 
whereas in fact they have much smaller 
domains, since none of them can take a 
negative value. We can use semantic 
constraints to reduce domains of these 
attributes as follows: 

 a) constrain each d in DNA  
  so that mol.wt(d) > 0; 
 b) constrain each d in DNA  
  so that seq_length(d) > 0; 
 
ii. We can constraint the molecular weight of 

DNA since we know that the value must be 
either equal or greater than the sum of the 
molecular weight (mol.wt) of its constituent 
chain. As we know that a particular fragment 
of DNA is directly proportional to its length 
i.e. its molecular weight (Berg et al., 2002), 
so we can say that: 

 
  DNA  αmol.wt of chain 
  so 
  DNA= k × mol.wt of chain 
  Where k  ≥1 
  so 
  Constrain each d in DNA to have mol.wt 

(d) ≥  
  sum(mol.wt(component-Dna(d) as 

chain)) 
 
iii. The information in DNA is stored as a code 

made up of four chemical bases: adenine (A), 
guanine (G), cytosine (C), and thymine (T) so 
we can enforce this essential biochemical 
“rules” about DNA structure using integrity 
constraints. 

  constrain each b in DNA Sequence  
  so that base(b) = {A, T, C, G}; 

iv. The number of adenine residues is equal to 
the number of thymine residues (A=T) and 
the number of guanine residues is equal to the 
number of cytosine residues (G=C), so we 
can enforce this essential biochemical “rules” 
about DNA structure using integrity 
constraints. Since we know that 
b={A,T,C,G}, so firstly we can constraint the 
possible size of Nitrogen Base length as: 

  constraint each b in DNA  
  so that base_length(b)=4; 
  Constrain each r in residue 

 To have num_residue(sense_strand_ 
component(r) as chain) 

  = num_residue (anti_sense_strand_ 
component(r) as chain) 

 
v. We can further constrain the possible number 

of codons that can be made from the DNA 
nucleotides since we know that the 
nucleotides in DNA are grouped in triplets, or 
3-letter ‘words’, known as codon (Kaestle et 
al., 2006). So we can constraint on codon 
length as: 

 
  Constrain each c in codon 
  So that codon_length(c) = 3 
 
 And the number of possible codons is 
recorded accurately by following constraint: 
 

  Constrain each n in nucleotide 
  So that num_codon(n )  ≤  64 
 

 Class hierarchy of the DNA structure is given 
in Figure 6. 
 After purposing the OODM for DNA 
structure, we have designed a DNA class- hierarchy 
given in Figure 6. This class hierarchy helps to 
identify DNA object classes, their internal structure, 
and the relationships in which they participate. 
 The above DNA structure class hierarchy 
describes all structural aspect of DNA structure 
data. As Figure 6 identifies the classes involved in 
formation of DNA structure, with relationships that 
exist between such classes. These relationships 
appear in class hierarchy with help of different 
notations given in Table V. e.g., the rectangle shows 
classes and objects and arrows show relationships 
between these classes or objects. The used notations 



M. NADEEM ET AL.  1792

and their representations in this hierarchal structure 
are given below in the Table V. 
 

 
 

 Fig. 6.  DNA structure class hierarchy. 
 
Table VI.- Notation & their representation used in DNA 

structure class hierarchy 
 

Notation used in DNA structure class hierarchy 
 

 
Object Class 

 
"is a" relationship 

 
"has a" relationship 

 

Shows description of 
particular class or object 

  

 This hierarchal representation provides O-O 
paradigm features and implicitly a constrained 
description of DNA structure that making it easier to 
understand the semantics of DNA Structure. The 
instance variables and methods of DNA object are 
given in Figure 6. 
 

Object (Dna)  
Instance-Variable{  
Name;  
Classification; 
Barcode; 
molecular_weight 
sequence_length;  
Array[] <String>niterogen_base [];  
ArrayList<Strand_sequence>dna_strands; 
 }  
Methods {similarity-search, substructure search, location 
search, numberOfSubsequence, barcodeSearch} 
Constraints { No.of base in dna_strand= No.of base in 
dna_anti_sense_strand, 
dna_sequence base[] = {A,T,C,G}, 
dna_mol_weight≥ sum(mol_weight(each base residue)), 
sequence_length&mol_weight>0}  

 
Fig. 7. Class type of DNA structure 

 

RESULTS AND DISCUSSION 
 
Encoding DNA structure-an illustrative example 
 Now, we demonstrate our encoding scheme 
though an example of a DNA structure and using 
our proposed Deoxyribonucleic acid-code format 
given in fig. 4 which has been given as follows: 
 The first part of the format in Figure 4 
describes the Coding Strand of Deoxyribonucleic 
acid structure. We are only encoding the  sense 
strand shaded box in the direction of arrow in Figure 
7. 
 In the above encoding pattern of Figure 8 we 
have encoded in the following pattern such as in the 
direction of arrow from upward to downward: 
 “Phosphate, Deoxy Ribo Sugar- Phosphate 
Bond, Deoxy Ribo Sugar, Deoxy Ribo Sugar-Base 
Bond, Adenine, Phosphate, Deoxy Ribo Sugar- 
Phosphate Bond, Deoxy Ribo Sugar, Deoxy Ribo 
Sugar-Base Bond, Guanine, Phospho-diester Bond”. 
 We simplify our encoding of sense strand 
nucleotides in Figure 9 by taking some codes 
common. 
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 Fig. 7. Two nucleotides used for encoding 
(www.cnx.org) 

 

 
 

Fig. 8. Encoding of SSDNA. 
 

 Referring to Table V we can see that Code 
006 represents “Adenine” and Code 007 represents 
“Guanine”. By applying complement operation on 
Figure 9 referring to Table III we get. 
 In the above encoding pattern of Figure 10 
we have encoded in the following pattern such as in 
the direction of arrow from upward to downward: 
 “ Phosphate, Deoxy Ribo Sugar- Phosphate 
Bond, Deoxy Ribo Sugar, Deoxy Ribo Sugar-Base 
Bond, Thymine, Phosphate, Deoxy Ribo Sugar- 
Phosphate Bond, Deoxy Ribo Sugar, Deoxy Ribo 
Sugar-Base Bond, Cytosine, Phosphodiester Bond ”. 
 By applying transcription operation 
“getDTrancript” on antisense strand sequence in 
Figure 10 RNA strand sequence is obtained. The 
algorithm of operation “getDTrancript” has been 
given in Appendix. RNA sequence is obtained after 
applying transcription algorithm on ASDNA 
sequence by (Lamb and Landis, 1991). Thus for 
each C base encountered on the DNA anti-sense 
strand, a G base is inserted in the RNA; for each G, 
a C; and for each T, an A is inserted. However, each 
A on the DNA anti-sense strand guides the insertion 
of the Uracil (U base). There is no T present in RNA 
strand given in Table IV. 

 
 

Fig. 9. Extracting common codes. 
 

 
 

 Fig. 10. Anti-sense encoding obtained 
after complement. 

 

 
 

 Fig. 11. RNA sequence obtained after 
transcription. 

 

 So we have examined that how DNA strand 
converts itself into a RNA sequence by going 
through an intermediary step of transcription.  
 After proposing an object oriented data model 
for DNA structure, we have proposed a Query 
language to store, retrieve and manipulate the DNA 
structure data. In order to send request and get 
results from database user has to make use of query 
language to fetch the information to and from 
database. Our proposed query language is a domain 
specific query language that is designed for DNA 
domain. 
 
Syntax of our proposed DNA-QL 
 Backus-Naur notation (BNF) is a way to 
describe the syntax of the programming languages. 
Any sentence which is derived using the rules 
specified in BNF notation is said to be syntactically 
correct. The rules are called production rules. These 
rules are defined with the help of some specific 
symbols. The BNF symbols used for our proposed 
DNA-QL are given in Table VII. 

Anti-Sense Strand Sense Strand 
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Table VII.- BNF Symbols used for DNA-QL. 
 

Symbol Description 
  
::= Means “is defined as” 
<> (<>) correspond to terminal or non-

terminals, describes portion of the 
language but not part of the actual syntax.  

[ ] To enclose optional elements, square 
brackets are used. 

| Represent the logical OR 
{ } The constructs within braces are grouped 

together 
  

 
DNA Select_Query ::=SELECT<asterisk>| 
<attribute_list>|<query_operator>[{ 
<comma><attribute_list> }... ] 
FROM <table_name> 
[WHERE <conditions>]  
[ARCHIVE <YES/NO>] 
[BARCOMP  <barcode>] 
 
 The interpretation of additional clauses is as 
follows: 
1. The SELECT and FROM Clause: This is 

similar to the SELECT command of the SQL 
and allows filtering out only the relevant 
attributes of those instance variables of an 
object which fulfill the given criteria. In the 
SELECT clause object methods or path 
expressions can be listed, with a comma 
between them. The objects in the database 
containing the data are instances of the 
classes listed in the FROM clause. To each 
listed class an object variable is associated: it 
is used to refer to object instances of the 
related class in the database. According to the 
object oriented approach, object attributes are 
referred through methods listed in the clauses, 
hiding implementation details to users. When 
a method is specified in a clause, the related 
code is executed. 

2. The WHERE Clause: In the WHERE clause 
the logical conditions which express the 
constraints that must be satisfied by the 
objects which will be selected in the database 
are specified. Complex constraints may be 
made composing simpler conditions, using 
the logical connectives AND, OR, NOT. As 
in SQL this clause supports a set of arithmetic 

operators {=, ≠, <, >, ≤, ≥} for comparisons. 
The comparison conditions are also allowed 
to use the aggregate functions of the SQL 
such as avg, sum, count, etc. The syntax of 
the clause will be: 

 WHERE<object> operator <condition> 
 { AND<object> operator <condition> 
 OR<object> operator <condition> } 
 
3. The ARCHIVE Clause: We have proposed an 

additional clause named as ARCHIVE that 
introduced the new concept of "GROWING 
DATABASE" which is so, far a dark area in 
the field of databases. This clause enables the 
user to store Query results in the form of 
tables. With the help of this clause a database 
history can be maintained in an efficient way. 
This clause provides two options, (YES or 
NO). If ARCHIVE clause is set to YES the 
user will be able to store Query results as a 
table in the database. These resultant tables 
can be used for further manipulations in 
future.  

4. MinMax: These operators are used for 
determining percentage (%) similarity of the 
queried structure e.g. if min is 85 and max is 
95 then it means that the structure should b at 
least 85% and at most 95% similar to the 
structure in query. 

5. The BARCOMP Clause: This clause is used 
to find similar DNA structure by simple 
comparison of stored barcodes of the DNA 
structures. 

 
 Our proposed DNA-QL provides some 
additional operators based on DNA domain, to 
which user can conveniently and easily send queries 
without any extra learning. Algorithms for these 
operators (e.g., Location, length of strand, sub 
sequence etc) are given in appendix section. 
 

CONCLUSION 
 
 The exiting practice is to handle the DNA 
data does not offer adequate and powerful support 
of the data storage, retrieval and manipulation like a 
DBMS. Also, the DNA structures are highly 
complex structures, and the existing database 
technology is unsuitable to handle them. To 
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overcome the drawbacks of the existing database 
and databanks technology in handling DNA 
structures and data, we have proposed an object-
oriented data model for DNA structures. The 
novelty of this data model is that it captures 
complex DNA structures in a simple fashion using 
the concept of barcode technology; and it provides a 
basis to answer complex queries of biologists. This 
data model also has provision for its extension for 
modeling and handling of the other biological data. 
In this paper, we have also given outlines of the 
DNA query language (DNA-QL) as an extension of 
SQL. In DNA-QL, we have introduced some new 
operators which are needed to query DNA data and 
structures in meaningful and simple manner.  
 The supplementary Material `Appendix’ is 
available 
http://www.zsp.com.pk/supplementary%20mater
ial/1783-1795%20(37)%20APPENDIX.pdf  
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