Freshwater Snail Fauna of Pothwar Region, Pakistan

Kiran Afshan1, Mirza Azhar Beg1, Iftikhar Ahmad2, M. Maqbool Ahmad2 and Mazhar Qayyum1
1Department of Zoology / Biology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi-46300, Pakistan
2Fish Seed Hatchery and Research Centre at Rawal Town, Punjab Fisheries Department, Islamabad
3Department of Biological Sciences, University of Wah, Wah Cantt

Abstract.- The present study was aimed to identify the freshwater snail fauna inhabiting water bodies of Pothwar region, Pakistan. A total of ten freshwater snail species were identified belonging to five families viz. Planorbidae, Physidae, Viviparidae, Lymnaeidae and Thiariidae. Ten freshwater snail species were identified based on their detailed morphometric shell characteristics. They were: Gyraulus convexiculus (Hutton, 1849), Indoplanorbid exustus (Deshayes, 1834), Physa acuta (Draparnaud, 1805), Physa gyrina (Say, 1821), Bellamya bengalensis (Lamarck 1822), Lymnaea (P.) acuminata f. rufescens (Gray, 1820), Lymnaea (P.) luteola (Lamarck, 1822), Lymnaea (P.) acuminata f. chlamys (Benson, 1836), Lymnaea auricularia (Linnaeus, 1758) and Melanoides tuberculata (Muller, 1774). The shell morphometric data of all species were taken with the help digital vernier caliper. The distribution of freshwater snails were also monitored in winter (December-February) and summer rainy (July-September) seasons. The results revealed that freshwater snails were more prevalent in summer rainy season as compared to winter season. This study provides first detailed taxonomic account of freshwater snails species commonly present in Pothwar region along with their detail shell morphometric account. Furthermore, it would provide a road map to carry out freshwater snail fauna in different region of Pakistan.

Key word: Freshwater snails, morphometric measurements, Pothwar region.

INTRODUCTION

Molluscs are a part of the invertebrate microfauna of freshwater habitats throughout the world. Identification of freshwater snails is of value to zoologists, malacologists and conchologists because of their role as intermediate hosts of the larvae of a variety of trematode parasites. Some freshwater snails mostly serve as intermediate hosts to the trematode parasites, namely Fasciola spp. and Schistosoma spp. of humans and animals (Appleton, 1996). Taxonomic information on the molluscs of Pakistan has been provided by Khatoon and Ali (1978), Nazneen and Begum (1990). These studies were carried out in the Provinces of Sindh, Balochistan, Khyber Pakhtunkhwa and central Punjab. There seems to be no information on the freshwater snails of Pothwar, the northwestern part of Punjab. This paper describes the shape, size and other characteristics of the shells of 10 species of freshwater snails belonging to five families collected from some parts of the Pothwar region.

MATERIALS AND METHODS

Study area

The present study on freshwater snails was conducted at different water bodies located in Rawalpindi, Islamabad, Fateh Jang, Chakwal and Attock areas of Pothwar region. The area is situated in a climatic region regarded as sub-tropical and sub-humid, latitude 30 and 34°N and longitude 70 and 74°E (Fig. 1). The mean annual rain fall of the area is 737 mm, mean minimum temperature 0-1°C in winter and mean maximum temperature 38.5°C in summer.

Collection and preservation of snails

The snails were collected from different water bodies during the dry (December-February) and wet (July-September) seasons of the year 2009-2010 by applying hand scoop and hand picking methods. The snails were taken to the laboratory, washed with clean water to remove the debris and detail of fresh specimen was recorded. The specimens were put in 96% alcohol for 24 hours before removing the soft parts. The shells, deeply covered with mineral deposit and alga, were cleaned by putting them in dilute solution of oxalic acid for few minutes, before being scrubbed with a soft brush.
brush and washed in water in order to reveal the sculpture of shell (Mandahl-Barth, 1962; Thompson, 2004). The shells were dried at room temperature and preserved for future studies.

The shells were dried at room temperature and preserved for future studies.

Morphometric data

The morphometric measurements of the shells were taken with the help of a digital vernier caliper and measurements were taken in millimeters (mm). The height, diameter of the shell, umbilicus diameter, number of whorls, aperture size, height of spire and other morphometric parameters of shell were taken as shown in Figures 2 and 3. For the identification of freshwater snails Preston (1915), Patil and Talmale (2005) and Burdi et al. (2008) were followed.

RESULTS

The snails were more common during the wet season (July-September) than during the dry and cold months (December-February) of the year (Fig. 4). Overall 10 species of freshwater snails belonging to five families and six genera were identified and described. The morphometric measurements of these species are given in Table I.
Table 1. Some linear morphometric measurements (ranges, means±SD) of the shell of freshwater snail species collected from Pothwar region.

<table>
<thead>
<tr>
<th>Shell parameters (abbreviations)</th>
<th>Shell height (SH)</th>
<th>Shell width (SW)</th>
<th>Aperture height/ Umbilicus diameter (AH or U)</th>
<th>SH/SW ratio</th>
<th>H/AH or SW/U ratio</th>
<th>Aperture width (AW)</th>
<th>Spire length/ Teleconch Length (SL or TL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellamya bengalensis (n=47)</td>
<td>13.63±32.60</td>
<td>10.76±20.20</td>
<td>7.90±17.59</td>
<td>1.26±1.61</td>
<td>1.61±2.10</td>
<td>6.52±14.69</td>
<td>8.36±18.84</td>
</tr>
<tr>
<td></td>
<td>(26.59±0.69)</td>
<td>(17.28±0.37)</td>
<td>(13.74±0.29)</td>
<td>(1.53±0.012)</td>
<td>(1.93±0.02)</td>
<td>(11.89±0.27)</td>
<td>(15.43±0.41)</td>
</tr>
<tr>
<td>Lymnaea (P.) acuminata f. rufescens (n=40)</td>
<td>12.20±18.22</td>
<td>5.74±9.62</td>
<td>8.36±3.50</td>
<td>1.81±2.30</td>
<td>4.68±8.31</td>
<td>4.68±8.31</td>
<td>3.00±5.60</td>
</tr>
<tr>
<td></td>
<td>(15.24±0.32)</td>
<td>(7.66±0.18)</td>
<td>(11.05±0.25)</td>
<td>(1.99±0.02)</td>
<td>(6.24±0.20)</td>
<td>(6.24±0.20)</td>
<td>(4.36±0.09)</td>
</tr>
<tr>
<td>Lymnaea (P.) laterula (n=3)</td>
<td>14.78±14.80</td>
<td>7.32±7.35</td>
<td>10.70±10.77</td>
<td>2.01±2.02</td>
<td>1.37±1.38</td>
<td>5.33±5.71</td>
<td>4.68±4.79</td>
</tr>
<tr>
<td></td>
<td>(14.79±0.006)</td>
<td>(7.33±0.008)</td>
<td>(2.01±2.02)</td>
<td>(1.37±0.03)</td>
<td>(5.49±0.11)</td>
<td>(4.73±0.03)</td>
<td></td>
</tr>
<tr>
<td>Lymnaea (P.) acuminata f. chlamys (n=59)</td>
<td>16.03±22.97</td>
<td>8.59±12.38</td>
<td>11.67±17.50</td>
<td>1.65±1.93</td>
<td>1.31±1.42</td>
<td>7.28±11.21</td>
<td>4.83±6.37</td>
</tr>
<tr>
<td></td>
<td>(19.72±0.43)</td>
<td>(11.00±0.27)</td>
<td>(1.79±0.01)</td>
<td>(1.36±0.008)</td>
<td>(9.42±0.24)</td>
<td>(5.65±0.13)</td>
<td></td>
</tr>
<tr>
<td>Lymnaea asculularia (n=8)</td>
<td>11.43±19.81</td>
<td>6.78±11.91</td>
<td>8.67±15.84</td>
<td>1.51±1.68</td>
<td>1.25±1.47</td>
<td>6.33±10.01</td>
<td>3.51±5.57</td>
</tr>
<tr>
<td></td>
<td>(16.90±0.97)</td>
<td>(10.51±0.64)</td>
<td>(12.82±0.82)</td>
<td>(1.61±0.02)</td>
<td>(1.32±0.03)</td>
<td>(8.56±0.51)</td>
<td>(4.40±0.26)</td>
</tr>
<tr>
<td>Melanoïdes tuberculata (n=39)</td>
<td>23.27±28.12</td>
<td>7.75±8.52</td>
<td>7.81±8.06</td>
<td>3.00±3.30</td>
<td>2.98±3.48</td>
<td>3.67±4.29</td>
<td>16.03±19.59</td>
</tr>
<tr>
<td></td>
<td>(25.70±22.43)</td>
<td>(8.13±0.38)</td>
<td>(7.93±0.12)</td>
<td>(3.15±0.14)</td>
<td>(3.23±0.25)</td>
<td>(3.98±0.31)</td>
<td>(17.81±1.78)</td>
</tr>
<tr>
<td>Physa acuta (n=34)</td>
<td>8.10±10.06</td>
<td>4.60±5.71</td>
<td>5.83±7.42</td>
<td>1.57±1.86</td>
<td>1.29±1.54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(9.0±0.17)</td>
<td>(5.18±0.09)</td>
<td>(6.50±0.12)</td>
<td>(1.73±0.02)</td>
<td>(1.38±0.01)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Physa gyrina (n=95)</td>
<td>8.01±14.25</td>
<td>4.99±8.75</td>
<td>6.09±10.33</td>
<td>1.54±1.76</td>
<td>1.31±1.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(11.81±0.62)</td>
<td>(7.18±0.39)</td>
<td>(8.51±0.44)</td>
<td>(1.64±0.02)</td>
<td>(1.38±0.01)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gyraulus convexusculus (n=80)</td>
<td>4.57±5.84</td>
<td>8.23±13.60</td>
<td>2.68±4.55</td>
<td>0.38±0.57</td>
<td>2.55±3.83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(4.99±0.09)</td>
<td>(10.64±0.28)</td>
<td>(3.36±0.9)</td>
<td>(0.47±0.01)</td>
<td>(3.18±0.08)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Indoplanorbis exustus (n=53)</td>
<td>5.42±7.18</td>
<td>12.70±16.27</td>
<td>3.66±4.86</td>
<td>0.40±0.47</td>
<td>3.14±3.83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(6.25±0.16)</td>
<td>(14.14±0.36)</td>
<td>(4.07±0.14)</td>
<td>(0.44±0.01)</td>
<td>(3.48±0.05)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(………) = These shell parameters were not taken in Planorbidae and Physidae families.

Family Planorbidae

1. Gyraulus convexusculus (Hutton, 1849)

Shell shape discoidal, number of whorls 3, umbilicus perforate, shell pale horn colour, glossy, depressed, dextral, whorls convex, suture well developed, last whorl expanded, periphery rounded to angulated only in last whorl, but not influencing the aperture, aperture is ovate-lunate, non-operculate, umbilicus broad, surface of the shell closely and obliquely striated.

2. Indoplanorbis exustus (Deshayes, 1834)

Shell shape discoidal, number of whorls 4, umbilicus perforate, shell greenish brown in colour, finely ridged, concavely flattened on both sides, coiled sinistrally, body whorl large, aperture broad and ear shaped, non-operculate, margin of the shell thin, umbilicus wide, sculpture with spiral striations.

Family Physidae

3. Physa acuta (Draparnda, 1805)

Shell conical thin to medium thick, number of whorls 3, umbilicus imperforate, shell light horny yellowish, dull sometimes slightly transparent, pale shiny, shell oval shape, apex peaky, sinistral, whorls weakly convex with shallow suture, aperture very large about 3/4 of shell height and narrow at the top, whitish band on inside of outer lip, imperforate, shell surface longitudinally striated.
4. *Physa gyrina* (Say, 1821)

Shell conical thin to medium thick, number of whorls 3, umbilicus imperforate, shell light brown, smooth, translucent, apex peaky, shell sinistral and somewhat inflated, whorls with slightly impressed suture, upper whorls with reddish shade, last whorl large, aperture about 55-75 per cent of shell height, shape of shell oval to round, aperture oblique with broad white callus at parietal side.

Family *Viviparidae*

5. *Bellamya bengalensis* (Lamarck, 1822)

Shell shape globes, number of whorls 5, umbilicus rimate, shell greenish or brownish with reddish brown bands, dextral, shell is thin and ovately conical, umbilicus narrow but open, whorls convex, sutures are narrowly depressed, height of the spire equal or greater than the height of aperture, sculpture finely striated; aperture almost round and operculated, operculum spiral with concentric growth rings around nucleus, apex very peaky.

Family *Lymnaeidae*

6. *Lymnaea (P.) acuminata f. rufescens* (Gray, 1820)

Thin conical shell, number of whorls 4, umbilicus imperforate, shell brown in colour, dextral, thin, ovately oblong and smooth, umbilicus closed, body whorl enlarged, angular above and inflated below, sutures obliquely depressed, aperture large mango shaped pointed above and inflated below, columella twisted and oblique, shell sculpture spirally striated, apex very short, thin and pointed.

7. *Lymnaea (Pseudosuccinea) luteola* (Lamarck, 1822)

Thin conical shell, number of whorls 4, umbilicus imperforate, shell pale or brownish in colour, dextral, thin, and broadly ovate, umbilicus closed, body whorl enlarged and inflated, spire with few number of whorls, sutures are depressed, aperture narrow and ovate, shell sculpture spirally striated, apex short and pointed.

8. *Lymnaea (P.) acuminata f. chlamys* (Benson, 1836)

Thin conical shell, number of whorls 5, umbilicus compressed, shell light brownish or whitish in colour, dextral, thin and oblongly ovate, body whorl enlarged and inflated, spire short and cone shaped, deeply sutured, umbilicus compressed, aperture large and ovate with twisted columella, shell sculpture smooth, glossy and spirally striated, apex pointed.

9. *Lymnaea auricularia* (Linnaeus, 1758)

Thin conical shell, number of whorls 4, umbilicus imperforate, shell light brownish in colour, dextral, thin and somewhat squarely ovate, body whorl abruptly enlarged, spire cone shaped, aperture large, very broad and ear shaped, shell sculpture spirally striated, apex sharp and pointed.

Family *Thiaridae*

10. *Melanoides tuberculata* (Muller, 1774)

Conical shell, number of whorls 7, shell light brown in colour, elongate and conical, whorl rounded, convex and gradually increasing in size downward, aperture small and ovate, operculum paucispiral, shell sculptured with reddish markings, vertical weakly curved ribs and much finer spiral striations.

DISCUSSION

The result of present study revealed that the freshwater snail fauna was more abundant in wet season (July-September) as compared to dry season (December-February) experiencing less rainfall. The species belong to Genus *Lymnaea* and *Bellamya* were predominant during summer rainy season. The availability of these species is regulated by various physico-chemical factors viz., temperature, hardness, pH, altitude, size of water bodies, vegetation and pollution are among the significant
factors influencing the distribution and abundance of gastropods (Ollerenshaw, 1958; Yilma, 1985). The optimum habitats for snails belonging to genus Lymnaea were permanent water and also found in marshy areas during dry season (Ollerenshaw, 1971; Villegas, 1984). The high density of Lymnaea and some other freshwater snails that serve as intermediate host during wet season would have become important source of digenetic infections. Similar observation were made by Brown (1980) who had reported that summer rainy season provides optimum conditions for the availability of freshwater snails. It has been anticipated that rainy season provides environmental conditions for the propagation of freshwater snails as availability of vegetation; a good food source is increased. It has been observed that snails breed in summer rainy season attain maximum size in dry winter season. The freshwater snails biodiversity in the given water bodies is associated with type of vegetation, presence of snail predators, topography and chemical composition. Similarly acceptable freshwater quality and environmental parameters might also be considered as good biological indicators to dictate the freshwater snail biodiversity richness in a given habitat. Furthermore the population density of gastropods of each species is seasonally fluctuated.

The freshwater snail fauna of Pakistan is least known in Asia. Previously literature showed that little information is generated on the identification of freshwater snail fauna. In present study snails belonging to five families and six genera were identified on the basis of morphological characteristics in shell sculpture, color pattern, shape differences and somewhat on soft body parts. Our findings are in agreement with previously reported studies from other water bodies of Pakistan (Preston, 1915; Begum and Nazneen, 1991, 1992a, b). Lymnaeid snails are known to be distributed throughout the world. They are intermediate host of helminthes parasites which cause diseases both in man and domestic animals. Four species of Lymnaea were identified and ranked as secondly dominant species in the study area. Among these four species Lymnaea acuminata chlamys was dominant over other three Lymnaeids. In Pakistan however, the studied taxonomical status of these Lymnaeids species is still unclear in various parts. It is to be pointed that Akhtar (1978) and Khatoon and Ali (1978) have described Lymnaea rufescens as a separate species instead of Lymnaea acuminata. However, Preston (1915), Subba Rao and Mitra (1979), Subba Rao et al. (1980), Goel and Srivastava (1980), Nazneen and Begum (1990) have described it as Lymnaea acuminata. The Lymnaea auricularia which was previously placed in Genus Radix has been characterized by having ear shaped aperture and is considered as intermediate host for many trematodes parasites especially for Fasciola hepatica and Fasciola gigantica. However, taxonomic status of the Genus Radix is still disputed (Bargues et al., 2001 and Remigio, 2002). The Bellamya bengalensis also commonly known as viviparous snails is predominant in the studied areas. It has been observed in the present study the adult viviparous (mystery-snail) females were bearing live young ones inside its specialized marsupium mental cavity indicating the recruitment patterns in natural habitat. The identification among member of Physidae within family is very difficult. The Physa acuta are also synonymized under the name as heterostropha, integra and virgata (Dillon et al., 2002; Wethington, 2004). The Physa acuta was first time reported in Pakistan by Begum and Nazneen (1991) whereas Physa gyrina was described by Khatoon and Ali (1978). The Physa snails are exhibiting cosmopolitan distribution pattern (Dillon et al., 2002) and confined in lentic water bodies usually attached with algal mats. The pulmonate snails such as Gyraulus convexiusculus and Indoplanorbis exustus were found in the study areas where they crawled onto the water plants and into the soil in the shallow water. Melanoides tuberculata is medically important because this specie serve as intermediate host for the human lung fluke, Paragonimus westermani. This snail was first placed under Genus Thiara (Muller, 1774; Preston, 1915), Nerita (Muller, 1774), Melania (Annandale, 1918; Satyamurti, 1952; Tonapi and Mulherkar, 1963; Khan and Dastagir, 1971; Khatoon and Ali, 1978) and Melanoides (Ray, 1943; Subba Rao and Mitra, 1979).

The results from the present study clearly showed that our information of the gastropods fauna of Pakistan is incomplete. In most of the cases shells
ACKNOWLEDGMENTS

The authors would like to acknowledge Higher Education Commission (HEC) of Pakistan for financial assistance. And the authors also express their gratitude to the officials of the Museums of Natural History Islamabad, Pakistan for extending co-operation in examining snail specimens and relevant literature.

REFERENCES

LAMARAK, 1822. *Lymnaea luteola*. *Handley and Theobald, Conch. Ind.*, Pl. 70, fig. 5.

RAY, H.C., 1943. Report on a collection of molluscs from

(Received 26 May 2012, revised 30 June 2012)