Characterization of Newcastle Disease Virus Isolated During 1995-2009 From Suburbs of Karachi-Pakistan

Taseer Ahmed Khan,1* Shafqat Fatima Rehmani,2 Ayaz Ahmed,3 Nazir Ahmed Lone4 and Muhammad Noman Khan1
1Poultry Research Laboratory, Department of Physiology, University of Karachi, Karachi-75270, Pakistan
2WTO Quality Operation Laboratory, University of Veterinary and Animal Sciences, Lahore
3Department of Biotechnology, Dalian Medical University, China
4Department of Biological Sciences, Karakoram International University, Gilgit-Baltistan

Abstract.- Newcastle disease (ND) which is caused by Avian Paramyxovirus type 1 is among the major concerns of poultry production worldwide. In developing countries especially where backyard poultry are not monitored for infection, ND remains a threat. The use of vaccines (live and inactivated) for the last 50 years in South Asia has not been able to control the infection. The poultry mortality rate worsened after the emergence of Avian Influenza in commercial poultry during early 1990’s. The present study was conducted on 84 samples during 1995-2009, from commercial poultry flocks in the suburbs of Karachi to isolate and characterize strains of Newcastle disease virus circulating in the region. The samples were passaged in 9-10 day old chicken embryonated eggs. Haemagglutinating activity was observed in eighty samples which were cross checked using ND virus (NDV) polyclonal serum employed in haemagglutination inhibition assay and only forty seven were positive for NDV. The infective allantoic fluid was later used for pathotyping of isolates by employing biological characterization tools. Results demonstrated that the majority of isolates were either mesogenic or velogenic strains based on the mean death time and intra cerebral pathogenicity indices. Molecular identification was done using reverse transcription polymerase chain reaction (RT-PCR) performed using viral RNA extracted from infective allantoic fluid. Three sets of previously reported primers were employed and primer set BK1/BK2 was found to be the most sensitive. The results suggest that Newcastle disease remains endemic and requires similar attention to that given to highly pathogenic avian influenza.

Key words: Newcastle disease, avian paramyxovirus type I, haemagglutinating activity, RT-PCR.

INTRODUCTION

Newcastle disease (ND), an infection caused by avian paramyxovirus type 1 (APMV-1), was a major threat for the developed world in early 60’s and late 70’s (Alexander, 1998). The disease remains a problem for the developing world. Newcastle disease virus (NDV) continues to trigger backyard poultry outbreaks in developed countries such as U.S.A. and UK because of the importation of exotic birds (Alexander et al., 1999a; Pedersen et al., 2004) and racing pigeons (Kaleta et al., 1988), respectively.

The disease is highly contagious and can infect approximately 236 avian species (Alexander, 1998). It exists as a single serotype based on neutralizing antibody test and cross protective analysis (Alexander et al., 1999a,b). It has been endemic in this region for six decades and outbreaks are still reported in Pakistan (Afzal, 1992; Akhtar and Zahid, 1995; Arsha, 2000). Live vaccines developed by local producers using indigenous strains has contributed to controlling the spread of disease (Rehmani, 1996). However the lack of regulatory statues on importation of live birds and poultry vaccines, have limited the impact of control efforts. In practice, infection and periodic outbreaks are not necessarily prevented through vaccination (Khalafall et al., 1992; Oncel et al., 1997; Roy et al., 2000; Yang et al., 1997, 1999), therefore, emerging NDV strains are of concern and may overcome vaccination barriers (Panshin et al., 2002).

Avian influenza virus (AIV) infection from significant strains (i.e. H5, H7, H9) in combination with NDV has been reported to be negatively impacting the poultry industry in Pakistan (Naeem and Siddiqui, 2006; Naeem et al., 1999, 2007).
The aim of this study was to evaluate the disease status in Pakistan that might assist local vaccine producers to develop new vaccines and strategies for the industry.

MATERIALS AND METHODS

Viruses

Tracheal tissue samples were collected from commercial poultry flocks and backyard poultry in the suburbs of Karachi during the period of 1995-2009. They were immediately immersed in liquid nitrogen and transported to the lab for virus isolation. A 0.1 mL of the inoculum was injected in the allantoic cavity of 9-10 day old chicken embryonated eggs and incubated at 37°C for 48-72 hrs. The embryos containing dead or dying embryos were checked for haemagglutination activity (HA), fluid harvested and stored at -80°C for future study.

Eighty-four tracheal tissue samples (list not shown) were collected during 1995-2009 from commercial poultry farms and backyard poultry in Karachi. The highest numbers of samples were collected during 2007-2009 because of the emergence of AIV (H5). The samples were propagated in 9-10 day old chicken embryonated eggs and 93% were positive for spot haemagglutination. The infective allantoic fluid was then inactivated with appropriate inactivating agent (0.1% formalin) prior to being utilized for HA or haemagglutination inhibition (HI) assay.

HA and HI assays

HA was performed in 96-well microtitre plates. The infective allantoic fluid was diluted two fold with sterilized normal saline and haemagglutination observed using 1.0% chicken RBCs (OIE, 2009).

For confirmation of NDV, beta procedure (constant virus, diluted serum) of HI was adopted (Beard and Wilks, 1973). Polyclonal sera against ND and AI (H5, H7 and H9) served as positive controls in HI. For this purpose, the known ND antiserum was diluted two fold with sterilized normal saline. Then 4 HA units of the infective allantoic fluid was added in each dilution. After incubation for 30 minutes, 1.0% chicken RBCs were added and HI titre was determined.

Pathotyping

Biological characterization of the NDV involves evaluating the virus for pathogenicity using the indices as outlines by Office International Epizootics (OIE) i.e. intracerebral pathogenicity index (ICPI) and mean death time (MDT). The assays were carried out as described earlier (Alexander, 1998). In brief ICPI indexes of less than 0.7, between 0.7 to 1.5 and greater than 1.5 classifies the virus as lentogenic, mesogenic and velogenic respectively. As for the MDT, less than 60 h, between 60-90 h and more than 90 h classify the virus as velogenic, mesogenic or lentogenic respectively (Hanson and Brandly, 1955).

Molecular identification of NDV

Molecular identification of NDV and AIV was carried out using one-step RT-PCR kit from Promega, USA as per manufacturer’s instructions. The composition of reaction mixture was as follows:

<table>
<thead>
<tr>
<th>Reaction buffer</th>
<th>10 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNTP’s mixture (100mM each dNTP’s)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Forward primer (50 pmol/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Reverse primer (50 pmol/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>AMV reverse transcriptase (5u / µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>2 µl</td>
</tr>
<tr>
<td>Tfi DNA polymerase (5u / µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Template</td>
<td>10 µl</td>
</tr>
<tr>
<td>RNAse free water</td>
<td>23 µl</td>
</tr>
</tbody>
</table>

PCR tubes were vortexed and spun down before being placed in the thermalcycler (Eppendorf Mastercycler, Germany). Positive controls were prepared using NDV (Lasota) and AIV (H5, H7, H9) vaccine samples from market, while the negative control was prepared using nuclease free water. Primers shown in Table I were used for detecting the NDV and AIV samples. Table II shows PCR temperature cycle conditions for different primers.

Electrophoresis was performed using 5 µL of the amplified product in 1.0 % (w/v) agarose gel in 1 X TAE buffer at 100 volts for 40 minutes. Followed by staining with ethidium bromide (1 ug/mL) for 30 minutes and destaining with distilled water for 10 minutes. The gels were than viewed in Chemi Doc (Bio Rad, USA) and analyzed...
via Quantity One software version 4.5. Five µL 100 bp DNA molecular weight marker (Fermentas, Germany) was electrophoresed subsequently to compare the base size.

RESULTS AND DISCUSSION

Results show that among the 93% of HA positive samples only 55% were ND positive, out of which 83% had solely NDV infection whereas the rest 17% had mixed infection with one of the avian influenza serotypes. The results obtained from pathotyping grouped 95% of NDV isolates with ICPI index > 0.7 and MDT of 87% with <60 hrs, 7% between 60-90 hrs and the rest above 90 hrs. Moreover, a 238 bp product with BK1/BK2 (Fig. 1) and 106 bp product with NPF/NPR (Fig. 2) was obtained for NDV and AIV isolates analyzed. A summary of the molecular identification using different primer sets is summarized in Table III. The primer set BK1/BK2 was found to be most sensitive in comparison to the other used in this study to identify the NDV. This is suggestive that a constant genome sequence monitoring is needed for ND to detect future variability worldwide (Khan et al., 2010; Wise et al., 2004; Kim et al., 2006).

Table III: Percentage of identification using published primer sets for Newcastle disease virus.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Primers (percentage positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDV</td>
<td>BK1/BK2 0% ONDV 1a F/ONDV 4a R 30% NDV 1 F/NDV 2 R NPF/NPR 0%</td>
</tr>
<tr>
<td>AIV</td>
<td>0 0 100%</td>
</tr>
</tbody>
</table>

The highest number were collected during 2008, the time when the region was experiencing outbreaks as a result of infection by highly pathogenic avian influenza (HPAI, H5N1) (Ayaz et
(T.A. Khan et al., 2009). It was observed that NDV infection was occurring as an underlying infection along with AIV (Ayaz et al., 2009). The pathotyping of the isolates as per OIE guidelines (OIE, 2009) classified the majority of samples as either mesogenic or velogenic in nature since the ICPI and MDT indices were greater than 0.7 and less than 90 hrs, respectively (Alexander, 2003).

Molecular identification of NDV, which was employed for the first time by Jestin and Jestin (Jestin and Jestin, 1991) using infective allantoic fluid and tissue, is now widely utilized with modifications for its detection (Creelan et al., 2002; Gohm et al., 2000; Kant et al., 1997; Meulemans et al., 2002) thereby eliminating the need for time consuming activities such as egg or tissue culture propagation of samples. ND is still a major constraint for the development of the poultry industry in Pakistan and further epidemiologic studies are required to support the development of an effective and sustainable control program.

ACKNOWLEDGEMENT

This study was partly supported by grant from Dean, Faculty of Science, University of Karachi.

REFERENCES

CHARACTERIZATION OF NEWCASTLE DISEASE VIRUS ISOLATES FROM PAKISTAN

(Received 8 June 2011, revised 24 August 2011)