Testicular Toxicity Induced by Deltamethrin in Albino Mice

Asma Rashid1, Asmatullah2, Nabiha Zara1 and Chaman Ara2

1Department of Zoology, Govt Science College, Wahdat Road, Lahore, Pakistan
2Department of Zoology, University of the Punjab, Lahore, Pakistan

Abstract. - The objective of this study was to investigate the toxic potential of deltamethrin on the development of testis in mice. The histopathological changes induced by deltamethrin were assessed in two groups. Different concentrations of deltamethrin 0.00, 3.00 and 5.00 µg/g BW were used repeatedly for 15 and 30 days. After dosing mice were acclimatized for some days. The testes were recovered at 45th day from treatment. Histological examinations revealed significant alterations in the testes of all dose groups. Histological abnormalities observed were hyalinization, vacuolization, exfoliated spermatocytes, dilation and tubular deformity, tubular destruction and atrophy, cellular vacuolated degeneration, apical sloughing and multilayered seminiferous epithelia with late spermatids lining the lumen of the seminiferous tubules in the testis. The observed pathological changes were dose concentration and exposure time duration dependent. It is concluded that the concentrations of deltamethrin used during the present study proved toxic in mice.

Keywords: Deltamethrin, pyrethroid toxicity, histopathology, murine testes.

INTRODUCTION

Deltamethrin [[(S) alpha-cyano-3-phenoxyl-benzyl-(1R)-cis-3-(2,2-dibromovinyl)-2,2-dimethyl-etelopropane-carboxylate], a type II pyrethroid, is widely used in pest control of agriculture and forestry because of its high activity against a broad spectrum of insects and pests. It is commonly used for the control of ectoparasites in domesticated animals and poultry. It is used as an alternative pesticide in malaria control program in India and other developing countries. It is reported to be most toxic, as it is neither fully metabolized nor quickly detoxified and therefore creates serious problems of residue accumulation especially in fatty tissues (Ansari and Razdan, 2001; Csillik et al., 2000; Erdogan et al., 2004; Jana-Kara et al., 1995; Pham et al., 1984; Rehman et al., 2006; Yadav et al., 2001).

The mode of action of deltamethrin is to interact with ion channels on the axons of target species. The basic metabolic reactions are cleavage of ester bonds by oxidation and/or hydrolysis followed by oxidation of released acid and alcohol moieties. The acid moiety is transformed into conjugates chiefly in the form of glucuronide, excreted in urine and hydrolyzed by liver microsomal enzymes (Anand et al., 2005; Hayes and Laws, 1990). Deltamethrin also produces a complex poisoning syndrome and acts on a wide range of tissues. They give sodium tail currents with relatively long time constants, which may be the reason of their ability to act on the whole range of excitable tissues (Hayes and Laws, 1991).

Previous studies have focused the possible role of deltamethrin on decreased sperm production and potentially cryptochidism (Gray et al., 1989; Gustafson and Donahoe, 1994; Jensen et al., 1995; Sharpe and Skakkebaek, 1993; McLanchlan, 1998; Toppari et al., 1996). There are different reports showing a trend towards decreasing sperm quality in men over the past five decades (Auger et al., 1995). Due to the relatively short period of time taken for this trend to occur, it is believed that decreasing sperm quality is the result of environmental rather than genetic factors (Giwercman et al., 1993).

In this study the effect of exposure to deltamethrin has been studied on histological structures of murine testes, with an objective to extrapolate these results to humans.

MATERIALS AND METHODS

Experimental animals

Adult males approximately 4-5 week old Swiss Webster strain of albino mice, Mus musculus, were obtained from Veterinary Research Institute,
Lahore. Animals were checked for external signs of injury or disease. All animals were kept in cages (14×10×7) in controlled environmental conditions in the form of 12 hour light/dark cycles, temperature 27±2°C and relative humidity 40-55%.

Test chemicals and dose preparation
Deltamethrin (2.5 EC) prepared by Redsum Group, with Reg No. Generic/DPP/2002 (1236) was used in this experiment. LD50 value for mice has already been determined as 21-34 mg/kg (The Agrochemicals Handbook. 1983). Two sub lethal doses were prepared as D-I and D-II by dissolving 3.00 and 5.00µg/g BW of the insecticide, respectively in corn oil. Both doses were daily administered orally to these animals for two and four week’s period.

Procedures
Mice were randomly distributed in one control and two experimental groups in3 cages, each with six mice. The control group received only 0.1 ml of corn oil daily for 45 days. From amongst experimental groups, one (Group D-I) received a daily dose of 3.00 µg/g BW for 30 days, while the second group (D-II) received a daily dose of 5.00µg/g BW for 15 days . These doses were administered orally as 0.1 ml with 1 ml glass syringe. The animals were slaughtered under ether anesthesia, 24 h in the control, 15 days in DI and 30 days in DII after administration of last dose. By surgical incision, the testes were taken out of the body. The above mentioned protocols were used under approved animal treatment conditions of medical ethics committee of Punjab University, Lahore, Pakistan.

Histopathological analysis
Testes samples collected from all groups were immediately fixed in Bouin’s fixative for 48 hr and then were preserved in 70% alcohol at room temperature. They were processed for paraffin sections (Spencer and Bancroft, 2008). The fixed tissue was routinely processed, embedded in wax and then 5µ thick transverse sections were studied under light microscope after staining with Haematoxylin and Eosin.

RESULTS
The control group (receiving only corn oil)
Normal histological structures of the testis were observed in the control group. Each seminiferous tubule was clearly lined with germinal epithelium. All types of spermatogenic cells: spermatogonia appeared in their normal shape: primary spermatocytes, spermatids and mature spermatooza were observed. Mature spermatoozoas were with their distinguished tails filled the lumen of seminiferous tubules. Sertoli and Leydig cells with regular shapes were observed (Fig. 1A, E).

Histopathological changes in mice group D-I (3.00µg/g BW)
In comparison to the control group severe testicular damages induced by deltamethrin were found in group D-I. These defects included; vacuolated degeneration of the spermatogenic cells, presence of necrotic cells inside the degenerative tubule, aspermatogenesis (Fig.1D), edema between the seminiferous tubule and hyalinization inside the tubule (Fig.1D), increase in apical sloughing (Fig.1B) Separation of spermatogenic cells from the germinal epithelial membrane (Fig.1C), exfoliation of spermatocytes in the lumen of some tubule (Fig.1B). Severe destruction of seminiferous tubule with multiple rupture of the germinal epithelial layers (Fig.1D). Tubular deformation (Fig.1D), Exfoliation of spermatocytes (Fig.1D), Rupture of germinal layer (Fig.1D). Severe tubular deformity associated with tubular rupture and complete spermatogenic cells degeneration (Fig.1D) were also observed.

Histopathological changes in mice group D-II (5.00µg/g BW)
Testis of mice treated under D-II group showed various anomalies during their development. There were multiple signs of vacoulation and cell necrosis with sloughing of epithelium of the tubule (Fig.1H). Decrease in number of spermatogenic cells (Fig.1C), exfoliation of spermatocytes (Fig.1F). In some specimen the intertubular tissue became hyalinized and thickened (Fig.1G). The spermatogenic cells were markedly reduced and majority of spermatocytes and
Fig. 1. Histological structure of murine testes after treatment with deltamethrin with 3µg/g B.W for 30 days (B, C, D) and 5µg/g B.W for 15 days (F, G, H) A and E are controls. Figure shows seminiferous tubules (S.T), sperms (SP), exfoliation of spermatocytes (green arrow), apical sloughing (blue arrow), vacuolization (yellow arrow), separation of spermatogenic cells from germinal epithelium (head arrow), tubular deformation (T.D), rupture of germinal layer (yellow star), aspermatogenesis (brown arrow), edema between the seminiferous tubule, hyalinization inside the tubule (orange arrow), absence of spermatocytes (red star), degeneration of interstitial cells (sky blue star), vacuolated degeneration (V.D), and interstitial cells degeneration (I.C.D). Stain: Hematoxylin & eosin.

Spermatids became degenerated (Fig.1G), increase in apical sloughing (Fig.1B), exfoliation of spermatocytes in the lumen of some tubules (Fig.1B).
DISCUSSION

Histopathological changes have been widely used as significant biological markers for environmental pollutants toxicity (Bhuiyan et al., 2001; Hinton et al., 1992; Meyers and Hendricks, 1985). The present study reported the testicular toxicity of deltamethrin. Various testicular damages were observed during this histological study, which revealed that deltamethrin caused reduction in spermatogenic cells, exfoliation of spermatocytes and in some cases complete spermatogenic cells degeneration. Several other anomalies such as severe deformity in seminiferous tubules, rupture of germinal epithelial layer surrounding the tubule, tubular atrophy, aspermato genesis, vacuolization, cell necrosis along with apical sloughing, degeneration of spermatocytes and spermatids, hyalinization in intertubular tissues, Sertoli and Leydig cell degeneration and multilayered seminiferous epithelia with late spermatids lining the lumen of seminiferous tubules were also seen in the experimental groups. The recorded symptoms were similar to those reported in previous studies on rats testicular toxicity (Clos et al., 1994; Hernandez et al., 2006; Turner, 2002).

Abdel-Khalik et al. (1993) recorded significant decrease in the weight of testes, seminal vesicle and prostate glands by oral administration of deltamethrin to male albino rats for 65 consecutive days at the dose level of 1 or 2 mg /kg. Significant decreases were also noted in sperm cell concentrations, percentage of live cells and sperm motility. An increase in the percentage of sperm abnormalities was also seen. Deltamethrin is also characterized for the production of testicular apoptosis in male rats. It was found that administration of deltamethrin (1mg/kg daily for 21 days) to male rats results into testicular apoptosis. Histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells, primary and secondary spermatocytes. Sertoli cell vacuoles were also seen, which indicates the reason for the suppression of spermatogenesis (El-Gohary et al., 1999).

Yao and Wang (2008) reported that deltamethrin can reduce sperm count and motility. It also causes deformity of the sperm head, increases the count of abnormal sperm, damages sperm DNA and induces its aneuploidy rate, as well as affects sex hormone levels and produces reproductive toxicity. These findings are in accordance with the current studies. Synthetic pyrethroids, deltamethrin are proven to be endocrine disruptors, which can increase the oestrogenic load in the body that exert negative feedback on FSH secretion. Reduced FSH secretion negatively effect male sexual development by reducing Sertoli cell multiplication, decreased sperm production and, potentially cryptorchidism (Gray et al., 1989; Gustafson and Donahoe, 1994; Jensen et al., 1995; McLanchlan, 1998; Sharpe and Skakkebaek, 1993; Toppari et al., 1996).

It is concluded that the deltamethrin is severely toxic in male albino mice, which may be equally harmful to the male reproductive health. Thus the use of this particular insecticide having multitudes of systemic and developmental toxicological effects should be minimized and/or appropriate care methods should be involved for its handling. It must be used under strict safety measures. Domestic use of deltamethrin should also be minimized as it is used as repellent for mosquitoes, for the control of ectoparasites in domesticated animals. Thus by minimizing its use it may be possible to get rid of its harmful effects particularly an agricultural country like Pakistan.

ACKNOWLEDGEMENT

The authors are grateful to the Chairman, Department of Zoology, University of the Punjab for providing necessary research facilities.

REFERENCES


ANSARI, M.A. AND RAZDAN, R.K., 2001. Concurrent...


(Received 23 January 2012, revised 30 July 2012)