Post-Translational Modifications of Non-Histone High Mobility Group Nucleosomal Proteins

AFSHAN KALEEM, TEHMINA SALEEM KHAN, WAQAR AHMAD, MUHAMMAD SALEEM, ABDUL RAHMAN KHAWAJA, SYED ALTAF HUSSAIN, ABDUL RAUF SHAKOORI AND NASIR-UD-DIN

Institute of Molecular Sciences & Bioinformatics, Lahore, Pakistan (AK, TSK, WA, NUD), Department of Botany, University of the Punjab, Lahore (MS), Mayo Hospital, Lahore, Pakistan (ARK), School of Biological Sciences, University of the Punjab, Lahore (ARS), HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan (NUD) and Institute of Management Sciences, Geneva, Switzerland (NUD)

Abstract.- High mobility group nucleosomal proteins, HMGN-1 and HMGN-2, regulate several DNA-dependent viz., transcription and replication activities of the mammalian nucleus. HMGN-1 decondensates the nucleosome, when it interferes with the linkage of histones to DNA. The HMGN-1 targets histones like H2B, H3 and linker histone H1. The histones-DNA interference is regulated by post-translational modifications at the Ser/Thr/Tyr residues of HMGN-1. Phosphorylation of HMGN-1 inhibits replication/transcription, whereas O-GlcNAc modification of HMGN-1 promotes replication/transcription. This in silico study proposes that, phosphorylation sites at Ser/Thr residues also exhibit O-GlcNAc modification potential. The prediction of O-GlcNAc modification sites and possible interplay between phosphorylation and O-glycosylation will enhance understanding of gene regulation.

Key words: High mobility group nucleosomal proteins HMGN, phosphorylation, O-GlcNAc modification, gene expression.

INTRODUCTION

The high mobility group nucleosomal proteins (HMGN) are evolutionarily conserved non-histone proteins that affect the stability of the higher-order chromatin structure (Bustin et al., 1990). These proteins are heterogeneous and are ubiquitously expressed in eukaryotes especially in mammals (Trieschmann et al., 1998; Birger et al., 2003; Lim et al., 2004). The major non-histone nucleosomal proteins are HMGN-1 and HMGN-2, also known as HMG-14 and HMG-17, respectively (Prymakowska-Bosak et al., 2001). HMGN proteins bind to the nucleosomal core as homodimers (Postnikov et al., 1995), and are the only nucleosomal proteins that specifically bind to the 146/147 bp nucleosome core histone proteins (Bustin and Reeves, 1996; Bustin, 2001). HMGN-1 binds specifically to histone H2B and H3 core proteins and consequently affects the chromatin structure (Trieschmann et al., 1998; Lim et al., 2004). Due to HMNG proteins involvement in chromatin remodeling, these are also termed as architectural proteins (Muchardt et al., 1996; Shirakawa et al., 1997).

The HMGN-1 protein binds to the nucleosome core through its nucleosome binding domain (NBD) (Lim et al., 2004). Binding of HMGN-1 relaxes the chromatin structure, and promotes the accessibility of transcription factors and co-activators to the transcriptionally induced gene (Birger et al., 2003). HMGN-1 competes with the linker histone H1 for bindings sites on the chromatin (Catez et al., 2002). H1 stabilizes the higher-order chromatin structure and acts as a general repressor of gene transcription, whereas HMGN proteins destabilizes and decondensates the chromatin structure (Wolffe et al., 1997; Cheung et al., 2002; Horn et al., 2002).

Phosphorylation of HMGN proteins contributes significantly to various nuclear processes (Bustin, 2001). HMGN phosphorylation occurs during the log phase of mitosis (Saffer and Glazer, 1982) suggesting that phosphorylation is a growth associated mechanism. During this phase, HMGN-1 is highly phosphorylated on Ser 20 and 24 in its nucleosome binding domain (NBD) and is translocated into the cytoplasm (Falciola et al.,
In late telophase, HMGN proteins relocate into the nucleus with the appearance of the nuclear envelope and co-localize with the chromatin (Hock et al., 1998). Furthermore, HMGN-1 modulates post-translational modifications (PTMs) of the core histones. When HMGN-1 is phosphorylated on Ser 20 and 24 during mitosis, it inhibits phosphorylation and acetylation of core histone H3 (Lim et al., 2004).

N-acetylglucosamine glycosylation (O-GlcNAc) is an enzyme dependent protein modification that commonly occurs on nucleosomal proteins (Comer and Hart, 2000). O-GlcNAc modification and phosphorylation can be reciprocal and occur on the same or adjacent Ser/Thr residues (Haltiwanger et al., 1997; Hart, 1997). However, the interplay between phosphorylation and O-GlcNAc modification depends on the specific function of the protein required in the particular environment (Comer and Hart, 2000). The alternation of these two modifications on the same or neighboring residue may modulate the specific function of the proteins either by enhancing or inhibiting the functional capacity. We propose that, amino acid residues where phosphorylation occurs can also accept O-GlcNAc modification suggesting possible interplay between O-GlcNAc glycosylation and phosphorylation in HMGN-1. This possible interplay between different post-translational modifications (PTMs) on HMGN-1 may control gene expression.

MATERIALS AND METHODS

Selection of model organisms

The HMGN-1 protein was selected for the determination of potential phosphorylation and O-GlcNAc modification sites in Mus musculus. The sequence data was retrieved from the Swiss-Prot sequence database with accession no. P18608 (Boeckmann et al., 2003).

Phosphorylation/O-GlcNAc modification prediction sites

Phosphorylation sites on Ser, Thr and Tyr were determined by using NetPhos 2.0 (http://www.cbs.dtu.dk/services/Netphos/) Server (Blom et al., 1999). NetPhos 2.0 is a neural network-based method for the prediction of potential phosphorylation sites. YinOYang 1.2 database (http://www.cbs.dtu.dk/services/YinOYang/) was used for the prediction of O-GlcNAc modification sites on Ser and Thr residues. Predicted phosphorylation sites were analyzed at 0.5 threshold value (in between zero and one). Zero threshold value was used for negative and one threshold value for positive possibility of phosphorylation prediction sites. However, the threshold value in the Yin Yang database prediction varies depending upon the surface accessibility.

BLAST searching and sequence alignment

BLAST searching was done by using NCBI database (http://www.ebi.ac.uk/blastall/) (Altschul et al., 1997) of non-redundant sequences. The sequences were aligned by using ClustalW database (Thompson et al., 1994) (http://www.ebi.ac.uk/clustalw/). Four mammals [Homo sapiens (Human with RefSeq, P05114), Pan troglodytes (Chimpanzee with RefSeq, XP_514899), Macaca mulatta (Rhesus monkey with RefSeq, XP_001098642) and Bos taurus (Cattle with RefSeq, NP_001029944 XP_871660)] were selected for sequence alignment.

Abbreviations

HMGN - High mobility group nucleosomal proteins, NBD - Nucleosome binding domain, PTMs - Post-translational modifications, OGT - O-GlcNAc transferase, OGT- O-GlcNAc transferase.

RESULTS AND DISCUSSION

The HMGN proteins have the ability to facilitate replication and/or transcription by unfolding the higher-order chromatin structure (Trieschmann et al., 1995; Ding et al., 1997). These proteins perform this function specifically by binding to the nucleosome core. The compaction of the chromatin is due to the presence of the linker histone H1, which specifically binds to the N-terminal of the core histones through its C-terminal tail (Postnikov et al., 1997). Histone H1 and dephosphorylated HMGN-1 compete with each
other for the nucleosomal interaction. The target site of HMGN-1 in the nucleosome core is close to that of H1 (Alfonso et al., 1994), thus it competes with and hinder almost all the H1 mediated activities (Ding et al., 1997). In the nucleosome binding process, the C-terminal of HMGN-1 is involved (Trieschmann et al., 1998), and binds to the N-terminal of H3 in the nucleosome core (Arents and Moudrianakis, 1993; Luger et al., 1997). Thus, the C-terminal of HMGN-1 is necessary for replication and transcription processes. But, the functional significance of the N-terminal region is not clear (Trieschmann et al., 1998). N-termini of core histones are involved in various processes leading to the rearrangement in the structure of chromatin and stimulation of DNA-dependent activities (Wolffe,
When HMGN-1 is attached to the N-terminal of H3, H3 binding to H1 is weakened (Trieschmann et al., 1998). As a result, the interaction of H1 and H3 is destabilized, which leads to decompaction of the nucleosomal core (Trieschmann et al., 1998).

We have predicted phosphorylation sites for the HMGN-1 by using the NetPhos database (Blom et al., 1999). These results suggest that, Ser 6 and Ser 19 are the potential sites for phosphate modification in mammalian HMGN-1 (Fig. 1). These results are in agreement with the previous work, which showed that Ser 6 and 19 residues are phosphorylation sites in HMGN-1 in *Mus musculus* (Walton et al., 1984; Spaulding et al., 1991; Barratt et al., 1994). Furthermore Walton and Gill (1983) and Walton et al. (1985) confirmed possible phosphorylation sites in human HMGN-1 at Ser 88 and 98, which also are in agreement with our results (Table I).

Four sites were predicted to act as Yin Yang sites, Ser 6, 19, 94 and Thr 70 (Fig. 2). Results

<table>
<thead>
<tr>
<th>Accession no</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Predicted sites for phosphorylation</th>
<th>Predicted sites for O-GlcNAc modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P18608</td>
<td>Mus musculus</td>
<td>Mouse</td>
<td>6, 19, 23, 45, 83, 86, 94</td>
<td>6, 19, 94, 70, 6, 19, 94, 70</td>
</tr>
<tr>
<td>NP_001029944</td>
<td>Bos taurus</td>
<td>Cattle</td>
<td>7, 21, 25, 47, 87, 90, 100</td>
<td>7, 21, 100, –, 7, 21, 100, –</td>
</tr>
<tr>
<td>XP_871660</td>
<td>Homo sapiens</td>
<td>Human</td>
<td>6, 20, 24, 45, 85, 88, 98</td>
<td>6, 20, 98, –, 6, 20, 98, –</td>
</tr>
<tr>
<td>P05114</td>
<td>Macaca mulatta</td>
<td>Rhesus monkey</td>
<td>7, 25, 46, 85, 88, 98</td>
<td>–, 7, 98, –, –, 7, 98, –</td>
</tr>
<tr>
<td>XP_001098642</td>
<td>Pan troglodytes</td>
<td>Chimpanzee</td>
<td>7, 21, 25, 46, 86, 89, 99</td>
<td>–, 7, 21, 99, –, 7, 21, 99, –</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target site for phosphorylation in NBD of HMGN-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macaca mulatta</td>
</tr>
<tr>
<td>Pan troglodytes</td>
</tr>
<tr>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Bos taurus</td>
</tr>
<tr>
<td>Mus musculus</td>
</tr>
</tbody>
</table>

Macaca mulatta	VQIKGKGAKGQEYANQIK-DLPAENGZTETSDDASDTEAKK 98
Pan troglodytes	VQIKGKGAKGQEYANQIK-DLPAENGZTETSDDASDTEAKK 98
Homo sapiens	VQIKGKGAKGQEYANQIK-DLPAENGZTETSDDASDTEAKK 98
Bos taurus	VQIKGKGAKGQEYANQIK-DLPAENGZTETSDDASDTEAKK 100
Mus musculus	VQIKGKGAKGQEYANQIK-DLPAENGZTETSDDASDTEAKK 98

Macaca mulatta	D 99
Pan troglodytes	D 100
Homo sapiens	D 99
Bos taurus	D 101
Mus musculus	D 98
obtained after sequence alignment of different mammals (human, Rhesus monkey, cattle and chimpanzee) against mouse showed that the Ser and Thr residues in HMGN-1 at Ser 6, 19, 23, 45, 83, 86 and 94 are highly conserved with the exception of Thr 70. Thr 70 was replaced by Lysine (K) residue.

Fig. 4. Interplay between phosphorylation and O-GlcNAc modification of HMGN-1 in the regulation of gene expression signals in mammals. (1) HMGN-1 and H1 compete with each other to bind with the nucleosome core. (2) When the HMGN-1 gets bind with nucleosome core, H1 detach from nucleosome core. (3) HMGN-1 binds to the compacted chromatin, and relaxes the structure. (4) Kinase enzyme like protein kinase C phosphorylates HMGN-1. (5) Phosphorylated HMGN-1 leaves the chromatin and is transported into the cytoplasm. (6) Decompacted chromatin is now ready to access the replication/transcription activators/co-activators. (7, 8) Activators/co-activators get attached to the chromatin and enhance the replication/transcription rate (gene expression). (9) The kinase phosphorylates HMGN-1 prior to binding with nucleosome core. (10) Phosphorylated HMGN-1 is unable to bind with the nucleosome core. (11) Chromatin remains in compacted form. (12) Compacted chromatin is not accessed for the
replication/transcription activators/co-activators and gene expression signals remain off. (13) OGT transfer O-GlcNAc moiety to HMGN-1. (14) HMGN-1 becomes O-GlcNAc modified. (15) O-GlcNAc modified HMGN-1 easily binds with nucleosome core and promotes gene expression. P = phosphorylated HMGN-1, O-G = O-GlcNAc modified HMGN-1.

in all the mammals (Fig. 3) and Ser 19 was replaced by Tryptophan (W) only in Rhesus monkey. When mouse HMGN-1 sequence was aligned with that of human, it was found that Ser 19 of mouse corresponds to Ser 21 and Ser 23 to Ser 24 in human HMGN-1.

When HMGN-1 is bound to the chromatin, it inhibits the ability of kinases to phosphorylate histone H3 at Ser 10 (Lim et al., 2004). Once, gene expression begins, HMGN-1 gets phosphorylated at Ser 19 and 23 (corresponds to 20 and 24 in human). Phosphorylation of HMGN-1 disrupts the binding between HMGN-1 and chromatin (Louie et al., 2000; Prymakowska-Bosak et al., 2001; Lim et al., 2004) as these Ser residues are located in the NBD, and relocates the protein into the cytoplasm (Bustin and Reeves, 1996; Louie et al., 2000) until the completion of cell cycle. In consistency with phosphorylation, disruption of chromatin interaction and translocation of HMGN-1 into the cytoplasm, peptide or major sequence, RRSARLSAK is involved (Palvimo and Maenpaa, 1988; Lund and Berg, 1991; Bustin and Reeves, 1996). This peptide/sequence represent the NBD of the HMGN-1 and are conserved in the mammals (with the exception of Rhesus monkey) (Fig. 3).

Our predicted Yin Yang sites, Ser 19 and 23, are located in HMGN-1’s NBD, and O-GlcNAc transferase (OGT) may play an equally important role in HMGN-1’s ability to bind to the chromatin structure. O-GlcNAc modification is a highly dynamic process in the regulation of a protein-dependent pathway in the cell (Kearse and Hart, 1991). Chromatin is known to be modified by OGT (Love and Hanover, 2005), and several transcription factors like CREB (Lamarre-Vincent and Hsieh-Wilson, 2003) and Sp1 (Majumdar et al., 2003) are also found to be O-GlcNAc modified. The HMGN-1 protein is known to be phosphorylated by protein kinase C (Prymakowska-Bosak et al., 2001), and an irreversible relationship between protein kinase C and OGT has been documented (Wells et al., 2001). The O-GlcNAc modification, which acts in a reciprocal manner to phosphorylation, prevents HMGN-1 from being phosphorylated. This suggests that O-GlcNAc modification of HMGN-1 promotes gene expression in mammals. If these Ser residues are O-GlcNAc modified by the O-GlcNAc transferase (OGT), the chance of PKC mediated phosphorylation of HMGN-1 minimizes (Fig. 4). These O-GlcNAc modification potential sites regulates the gene expression in mammals as these O-GlcNAc modified HMGN-1 gets easily attached to the nucleosome, so gene expression is unaffected.

ACKNOWLEDGEMENT

Nasir-ud-Din acknowledges partial financial support from Pakistan Academy of Sciences, and support from Dr. T.A. Khawaja to IMSB.

REFERENCES

BOECKMANN, B., BAIROCH, A., APWEILER, R., BLATTER, M.C., ESTREICHER, A., GASTEIGER, E., MARTIN, M.J., MICHOUD, K., O’DONOVAN,
POST-TRANSLATIONAL MODIFICATIONS OF HMG PROTEINS

PRYMAKOWSKA-BOSAK, M., MISTELI, T., HERRERA, J.E., SHIRAKAWA, H., BIRGER, Y., GARFIELD, S.

SHIRAKAWA, H., TANIGAWA, T., SUGYAMA, S., KOBAYASHI, M., TERASHIMA, T., YOSHIDA, K., ARAI, T. AND YOSHIDA, M., 1997. Nuclear accumulation of HMG2 is mediated by a basic region interspaced with a long DNA-binding sequence, and retention within the nucleus requires the acidic carboxyl terminus. Biochemistry, 36: 5992-5999.

(Received 7 August 2006, revised 10 December 2006)